960 resultados para TMI SST
Resumo:
Numerous peptide receptors have recently been reported to be expressed or overexpressed in various human cancers. For instance, somatostatin receptors are particularly frequently expressed in gastroenteropancreatic neuroendocrine tumors (GEP-NET), including both primaries and metastases. The density is often high, and the distribution is usually homogenous. While various somatostatin receptor subtypes can be expressed in these tumors, the sst(2) is clearly predominant. These receptors represent the molecular basis for a number of clinical applications, including symptomatic therapy with octreotide in hormone-secreting GEP-NET, in vivo diagnostic with radiolabeled diethylene triamine pentaacetic acid octreotide (Octreoscan) to evaluate the extend of the disease, and (90)Y- or (177)Lu-[(90)Y-DOTA]-D: -Phe(1)-Tyr(3) octreotide radiotherapy. GEP-NET can, however, express peptide receptors other than somatostatin receptor: Insulinomas have more glucagon-like peptide 1 receptors than somatostatin receptors; gastrinomas express very high levels of secretin receptors. GEP-NET may also express cholecystokinin 2, bombesin, neuropeptide Y, or vasoactive intestinal peptide receptors. Often, several of these peptide receptors are expressed simultaneously in GEP-NET, providing a molecular basis for in vivo multireceptor targeting of those tumors.
Resumo:
The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst 4 in all cases).
Resumo:
H-DPhe (2)-c[Cys (3)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Thr (15)-NH2 (1) (a somatostatin agonist, SRIF numbering) and H-Cpa (2)-c[DCys (3)-Tyr (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Nal (15)-NH2 (4) (a somatostatin antagonist) are based on the structure of octreotide that binds to three somatostatin receptor subtypes (sst 2/3/5) with significant binding affinity. Analogues of 1 and 4 were synthesized with norcysteine (Ncy), homocysteine (Hcy), or D-homocysteine (DHcy) at positions 3 and/or 14. Introducing Ncy at positions 3 and 14 constrained the backbone flexibility, resulting in loss of binding affinity at all sst s. The introduction of Hcy at positions 3 and 14 improved selectivity for sst 2 as a result of significant loss of binding affinity at the other sst s. Substitution by DHcy at position 3 in the antagonist scaffold (5), on the other hand, resulted in a significant loss of binding affinity at sst 2 and sst 3 as compared to the different affinities of the parent compound (4). The 3D NMR structures of the analogues in dimethylsulfoxide are consistent with the observed binding affinities.
Resumo:
PURPOSE: Somatostatin receptor (sst) targeting is an established method to image and treat sst-positive tumors. Particularly, neuroendocrine tumors express the receptor subtype 2 in high density, but sst1, sst3, sst4, and sst5 are also expressed to some extent in different human tumors. Currently used targeting peptides mainly have sst2 affinity. We aimed at developing (radio)peptides that bind with high affinity to all receptor subtypes. EXPERIMENTAL DESIGN: Carbocyclic octapeptides were coupled with macrocyclic chelators for radiometal labeling. Affinity, internalization, and agonist potencies were determined on sst1- to sst5-expressing cell lines. Biodistribution was determined on nude mice bearing HEK-sst2 or AR4-2J and HEK-sst3 tumors. RESULTS: High affinity to all receptor subtypes was found. Y(III)-KE88 showed agonistic properties at all five sst receptor subtypes as it inhibits forskolin-stimulated cyclic AMP production. Surprisingly, very low or even absent sst2 receptor internalization was found compared with currently clinically established octapeptides, whereas the sst3 internalization was very efficient. Biodistribution studies of [(111)In]KE88 and [(67)Ga]KE88/[(68)Ga]KE88 reflected the in vitro data. In nude mice with s.c. implanted sst2 (HEK-sst2, AR4-2J)-expressing and sst3 (HEK-sst3)-expressing tumors, high and persistent uptake was found in sst3-expressing tumors, whereas the uptake in the sst2-expressing tumors was lower and showed fast washout. The kidney uptake was high but blockable by coinjection of lysine. CONCLUSION: This peptide family shows pansomatostatin potency. As radiopeptides, they are the first to show a full pansomatostatin profile. Despite some drawback, they should be useful for imaging sst2-expressing tumors with short-lived radiometals, such as (68)Ga, at early time points and for sst3-expressing tumors at later time points with longer-lived radiometals, such as (64)Cu or (86)Y.
Resumo:
Somatostatin-based radioligands have been shown to have sensitive imaging properties for neuroendocrine tumours and their metastases. The potential of [(55)Co(dotatoc)] (dotatoc =4,7,10-tricarboxymethyl-1,4,7,10-tetraazacyclododecane-1-ylacetyl-D-Phe-(Cys-Tyr-D-Trp-Lys-Thr-Cys)-threoninol (disulfide bond)) as a new radiopharmaceutical agent for PET has been evaluated. (57)Co was used as a surrogate of the positron emitter (55)Co and the pharmacokinetics of [(57)Co(dotatoc)] were investigated by using two nude mouse models. The somatostatin receptor subtype (sst1-sst5) affinity profile of [(nat)Co(dotatoc)] on membranes transfected with human somatostatin receptor subtypes was assessed by using autoradiographic methods. These studies revealed that [(57)Co(dotatoc)] is an sst2-specific radiopeptide which presents the highest affinity ever found for the sst2 receptor subtype. The rate of internalisation into the AR4-2J cell line also was the highest found for any somatostatin-based radiopeptide. Biodistribution studies, performed in nude mice bearing an AR4-2J tumour or a transfected HEK-sst2 cell-based tumour, showed high and specific uptake in the tumour and in other sst-receptor-expressing tissues, which reflects the high receptor binding affinity and the high rate of internalisation. The pharmacologic differences between [(57)Co(dotatoc)] and [(67)Ga(dotatoc)] are discussed in terms of the structural parameters found for the chelate models [Co(II)(dota)](2-) and [Ga(III)(dota)](-) whose X-ray structures have been determined. Both chelates show six-fold coordination in pseudo-octahedral arrangements.
Resumo:
We describe synthesis, conformational studies, and binding to the five somatostatin receptors (sst 1-5) of a few analogues of the cyclic octapeptide octreotide (1), where the disulfide bridge was replaced by a dicarba group. These analogues were prepared by on-resin RCM of linear hepta-peptides containing two allylglycine residues; first- and second-generation Grubbs catalyst efficiencies were compared. The C=C bridge was hydrogenated via two different methods. Binding experiments showed that two analogues had good affinity and high selectivity for the sst5 receptor. Three-dimensional structures of the active analogues were determined by (1)H NMR spectroscopy. Conformation-affinity relationships confirmed the importance of D-Phe(2) orientation for sst2 affinity. Moreover, helical propensities well correlates with the peptide sst5 affinity. The presence of the bulky aromatic side chain of Tyr(Bzl)(10) favored the formation of a 3(10)-helix and enhanced the sst5 selectivity suppressing the sst2 affinity. Finally, a new pharmacophore model for the sst5 was developed.
Resumo:
Radiolabeled sst 2 and sst 3 antagonists are better candidates for tumor targeting than agonists with comparable binding characteristics (Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Erchegyi, J.; Rivier, J.; Mäcke, H. R.; Reubi, J. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16436-16441.). Because most of the neuroendocrine tumors express sst 2, we used the known antagonists acetyl- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 1) (Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1996, 50, 709-715. Bass, R. T.; Buckwalter, B. L.; Patel, B. P.; Pausch, M. H.; Price, L. A.; Strnad, J.; Hadcock, J. R. Mol. Pharmacol. 1997, 51, 170; Erratum.) and H-Cpa (2)- c[ dCys (3)-Tyr (7)- dTrp (8)-Lys (9)-Thr (10)-Cys (14)]-2Nal (15)-NH 2 ( 7) (Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.; Coy, D. H. J. Med. Chem. 1999, 42, 1863-1871.) as leads for analogues with increased sst 2 binding affinity and selectivity. Among the 32 analogues reported here, DOTA- pNO 2Phe (2)- c[ dCys (3)-Tyr (7)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)- dTyr (15)-NH 2 ( 3) and DOTA-Cpa (2)- c[ dCys (3)-Aph (7)(Hor)- dAph (8)(Cbm)-Lys (9)-Thr (10)-Cys (14)]- dTyr (15)-NH 2 ( 31) had the highest sst 2 binding affinity and selectivity. All of the analogues tested kept their sst 2 antagonistic properties (i.e., did not affect calcium release in vitro and competitively antagonized the agonistic effect of [Tyr (3)]octreotide). Moreover, in an immunofluorescence-based internalization assay, the new analogues prevented sst 2 internalization induced by the sst 2 agonist [Tyr (3)]octreotide without being active by themselves. In conclusion, several analogues (in particular 3, 31, and 32) have outstanding sst 2 binding and functional antagonistic properties and, because of their DOTA moiety, are excellent candidates for in vivo targeting of sst 2-expressing cancers.
Resumo:
Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.
Resumo:
QUESTIONS UNDER STUDY / PRINCIPLES: The surgical therapy of basal cell carcinoma (BCC) is especially demanding in the facial area. This retrospective study was undertaken to evaluate the outcome of staged surgical therapy (SST) of BCC of the head and neck region performed on an interdisciplinary basis at our institution. METHODS: Patients treated for BCC in the head and neck area between 1/1/1997 and 31/12/2001 were included in the study. The lesions were histologically evaluated. Diameter of lesion, number of stages, defect coverage, operation time, and recurrence and infection rates were analysed using descriptive and inferential statistical procedures. RESULTS: 281 patients were included in the study. SST was performed in two stages in 43.7%, in three stages in 12.9% and in four or more stages in 2.7%, depending on the type of tumour and the patient's pretreatment status. The total operating time per lesion averaged one hour. Defect coverage was achieved by direct closure (37.7%), by full thickness skin graft (39.5%), by split skin graft (1.1%), by local flaps (20.3%) or by composite grafts (1.1%). Median follow-up time was 58.5 months. Low rates of recurrence (3.6%) and infection (2%) were observed with this technique. CONCLUSIONS: The staged surgical therapy of basal cell carcinoma evaluated here offers a series of advantages in respect of patient comfort and safety and economy, while allowing precise histological safety with low infection rates and reliable long-term results.
Resumo:
The successful peptide receptor imaging of tumors, as exemplified for somatostatin receptors, is based on the overexpression of peptide receptors in selected tumors and the high-affinity binding to these tumors of agonist radioligands that are subsequently internalized into the tumor cells in which they accumulate. Although in vitro studies have shown ample evidence that the ligand-receptor complex is internalized, in vivo evidence of agonist-induced internalization of peptide receptors, such as somatostatin receptors, is missing. METHODS: Rats subcutaneously transplanted with the somatostatin receptor subtype 2 (sst(2))-expressing AR42J tumor cells were treated with intravenous injections of various doses of the sst(2) agonist [Tyr(3), Thr(8)]-octreotide (TATE) or of the sst(2) antagonist 1,4,7,10-tetraazacyclododecane-N,N',N'',N''',-tetraacetic acid (DOTA)-Bass and were sacrificed at various times ranging from 2.5 min to 24 h after injection. The tumors and pancreas were then removed from each animal. All tissue samples were processed for sst(2) immunohistochemistry using sst(2)-specific antibodies. RESULTS: Compared with the sst(2) receptors in untreated animals, which localized at the plasma membrane in pancreatic and AR42J tumor cells, the sst(2) receptors in treated animals are detected intracellularly after an intravenous injection of the agonist TATE. Internalization is fast, as the receptors are already internalizing 2.5 min after TATE injection. The process is extremely efficient, as most of the cell surface receptors internalize into the cell and are found in endosomelike structures after TATE injection. The internalization is most likely reversible, because 24 h after injection the receptors are again found at the cell surface. The process is also agonist-dependent, because internalization is seen with high-affinity sst(2) agonists but not with high-affinity sst(2) antagonists. The same internalization properties are seen in pancreatic and AR42J tumor cells. They can further be confirmed in vitro in human embryonic kidney-sst(2) cells, with an immunofluorescence microscopy-based sst(2) internalization assay. CONCLUSION: These animal data strongly indicate that the process of in vivo sst(2) internalization after agonist stimulation is fast, extremely efficient, and fully functional under in vivo conditions in neoplastic and physiologic sst(2) target tissues. This molecular process is, therefore, likely to be responsible for the high and long-lasting uptake of sst(2) radioligands seen in vivo in sst(2)-expressing tumors.
Resumo:
The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.
Resumo:
Reconstruction of a cleft lip leads inevitably to scar tissue formation. Scar tissue within the restored oral orbicular muscle might be assessed by quantification of the local contractility of this muscle. Furthermore, information about the contraction capability of the oral orbicular muscle is crucial for planning the revision surgery of an individual patient. We used ultrasound elastography to determine the local deformation (strain) of the upper lip and to differentiate contracting muscle from passive scar tissue. Raw ultrasound data (radio-frequency format; rf-) were acquired, while the lips were brought from normal state into a pout condition and back in normal state, in three patients and three normal individuals. During this movement, the oral orbicular muscle contracts and, consequently, thickens in contrast to scar tissue that will not contract, or even expand. An iterative coarse-to-fine strain estimation method was used to calculate the local tissue strain. Analysis of the raw ultrasound data allows estimation of tissue strain with a high precision. The minimum strain that can be assessed reproducibly is 0.1%. In normal individuals, strain of the orbicular oral muscle was in the order of 20%. Also, a uniform strain distribution in the oral orbicular muscle was found. However, in patients deviating values were found in the region of the reconstruction and the muscle tissue surrounding that. In two patients with a successful reconstruction, strain was reduced by 6% in the reconstructed region with respect to the normal parts of the muscle (from 22% to 16% and from 25% to 19%). In a patient with severe aesthetical and functional disability, strain decreased from 30% in the normal region to 5% in the reconstructed region. With ultrasound elastography, the strain of the oral orbicular muscle can be quantified. In healthy subjects, the strain profiles and maximum strain values in all parts of the muscle were similar. The maximum strain of the muscle during pout was 20% +/- 1%. In surgically repaired cleft lips, decreased deformation was observed.
Resumo:
Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.
Resumo:
The accurate reconstruction of sea surface temperature (SST) history in climate-sensitive regions (e.g. tropical and polar oceans) became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin.) highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca) of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin.) is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02)‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5)°C associated with salinities below 33.0 (±0.5)‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin.), becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.