961 resultados para TISSUE-SPECIFIC STEM CELLS
Resumo:
Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.
Resumo:
BACKGROUND AND OBJECTIVES: Donor cytomegalovirus seropositivity was reported to improve leukemia outcomes in HLA-A2 identical hematopoietic cell transplant (HCT) recipients, due to a possible cross-reactivity of donor HLA-A2-restricted CMV-specific T cells with minor histocompatibility (H) antigen of recipient cells. This study analyzed the role of donor CMV serostatus and HLA-A2 status on leukemia outcomes in a large population of HLA-identical HCT recipients. DESIGN AND METHODS: Leukemia patients transplanted between 1992 and 2003 at the Fred Hutchinson Cancer Research Center were categorized as standard risk [leukemia first remission, chronic myeloid leukemia in chronic phase (CML-CP)] and high risk (advanced disease) patients. Time-to-event analysis was used to evaluate the risk of relapse and death associated with HLA-A2 status and donor CMV serostatus. RESULTS: In standard risk patients, acute leukemia (p<0.001) and sex mismatch (female to male, p=0.004)) independently increased the risk of death, while acute leukemia increased the risk of relapse (p<0.001). In high risk patients acute leukemia (p=0.01), recipient age > or = 40 (p=0.005) and herpes simplex virus (HSV) seropositivity (p<0.001) significantly increased the risk death; HSV seropositivity (p=0.006) increased the risk of relapse. Donor CMV serostatus had no significant effect on mortality or relapse in any HLA group. INTERPRETATION AND CONCLUSION: This epidemiological study did not confirm the previously reported effect of donor CMV serostatus on the outcomes of leukemia in HLA-A2-identical HCT recipients. Addressing the question of cross-reactivity of HLA-A2-restricted CMV-specific T cells with minor H antigens in a clinical study would require knowledge of the patient's minor H antigen genotype. However, because of the unbalanced distribution of HLA-A2-restricted minor H antigens in the population and their incomplete identification, this question might be more appropriately evaluated in in vitro experiments than in a clinical study.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Interest groups advocate centre-specific outcome data as a useful tool for patients in choosing a hospital for their treatment and for decision-making by politicians and the insurance industry. Haematopoietic stem cell transplantation (HSCT) requires significant infrastructure and represents a cost-intensive procedure. It therefore qualifies as a prime target for such a policy. We made use of the comprehensive database of the Swiss Blood Stem Cells Transplant Group (SBST) to evaluate potential use of mortality rates. Nine institutions reported a total of 4717 HSCT - 1427 allogeneic (30.3%), 3290 autologous (69.7%) - in 3808 patients between the years 1997 and 2008. Data were analysed for survival- and transplantation-related mortality (TRM) at day 100 and at 5 years. The data showed marked and significant differences between centres in unadjusted analyses. These differences were absent or marginal when the results were adjusted for disease, year of transplant and the EBMT risk score (a score incorporating patient age, disease stage, time interval between diagnosis and transplantation, and, for allogeneic transplants, donor type and donor-recipient gender combination) in a multivariable analysis. These data indicate comparable quality among centres in Switzerland. They show that comparison of crude centre-specific outcome data without adjustment for the patient mix may be misleading. Mandatory data collection and systematic review of all cases within a comprehensive quality management system might, in contrast, serve as a model to ascertain the quality of other cost-intensive therapies in Switzerland.
Resumo:
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Resumo:
HLA-A2-restricted cytolytic T cells specific for the immunodominant human tumor Ag Melan-A(MART-1) can kill most HLA-matched melanoma cells, through recognition of two naturally occurring antigenic variants, i.e., Melan-A nonamer AAGIGILTV and decamer EAAGIGILTV peptides. Several previous studies have suggested a high degree of TCR cross-reactivity to the two peptides. In this study, we describe for the first time that some T cell clones are exclusively nonamer specific, because they are not labeled by A2/decamer-tetramers and do not recognize the decamer when presented endogenously. Functional assays with peptides gave misleading results, possibly because decamers were cleaved by exopeptidases. Interestingly, nonapeptide-specific T cell clones were rarely Valpha2.1 positive (only 1 of 19 clones), in contrast to the known strong bias for Valpha2.1-positive TCRs found in decamer-specific clones (59 of 69 clones). Molecular modeling revealed that nonapeptide-specific TCRs formed unfavorable interactions with the decapeptide, whereas decapeptide-specific TCRs productively created a hydrogen bond between CDR1alpha and glutamic acid (E) of the decapeptide. Ex vivo analysis of T cells from melanoma metastases demonstrated that both nonamer and decamer-specific T cells were enriched to substantial frequencies in vivo, and representative clones showed efficient tumor cell recognition and killing. We conclude that the two peptides should be regarded as distinct epitopes when analyzing tumor immunity and developing immunotherapy against melanoma.
Resumo:
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Resumo:
Optimal seeding of a nerve conduit with cells is a core problem in tissue engineering of constructing an artificial nerve substitute to gap lesions in the peripheral nerve system. An ideal nerve gap substitute would have to present an equally distributed number of cells that can activate the regrowing axons. This work shows a new in vitro technique of two-step seeding of cells inside a conduit and on layered mats that allows a valuable targeting of the cells and a proven survival in the environment of poly-3-hydroxybutyrate (PHB) conduits. The technique uses two components of diluted fibrin glue Tisseel. Initially, the chosen area on the mat was coated with thrombin followed from the seeding of a fibrinogen-cell compound. Using Sprague Dawley rat cells, we could demonstrate with immunohistochemistry (S100, DAPI) techniques that undifferentiated (uMSC) and Schwann cells (SC) mimicking differentiated mesenchymal stem cells (dMSC) as well as SC can be suspended and targeted significantly better in dissolvable diluted fibrin glue than in growth medium. Analysis showed significantly better values for adherence (p < 0.001) and drop off (p < 0.05) from seeded cells. Using this two-step application allows the seeding of the cells to be more precise and simplifies the handling of cell transplantation.
Resumo:
Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Resumo:
This commentary reviews the data on HLA-A2-restricted CD8 T cells specific for peptide (540-548) derived from hTERT (human telomerase reverse transcriptase). Several studies have reported the successful generation of such T cells (1, 2, 3). However, tumor recognition was observed in some, but not all, studies. More data are required to elucidate whether hTERT peptide (540-548) -specific T cells can indeed recognize and destroy tumor cells. It would be highly useful if telomerase would emerge as a universal tumor antigen that can be targeted in the cancer immunotherapy of HLA-A2 positive patients.
Resumo:
Efficient immune attack of malignant disease requires the concerted action of both CD8+ CTL and CD4+ Th cells. We used human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic mice, in which the mouse CD8 molecule cannot efficiently interact with the alpha3 domain of A2.1, to generate a high-affinity, CD8-independent T cell receptor (TCR) specific for a commonly expressed, tumor-associated cytotoxic T lymphocyte (CTL) epitope derived from the human p53 tumor suppressor protein. Retroviral expression of this CD8-independent, p53-specific TCR into human T cells imparted the CD8+ T lymphocytes with broad tumor-specific CTL activity and turned CD4+ T cells into potent tumor-reactive, p53A2.1-specific Th cells. Both T cell subsets were cooperative and interacted synergistically with dendritic cell intermediates and tumor targets. The intentional redirection of both CD4+ Th cells and CD8+ CTL by the same high-affinity, CD8-independent, tumor-specific TCR could provide the basis for novel broad-spectrum cancer immunotherapeutics.
Resumo:
Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.