852 resultados para THERAPEUTIC USES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of endotoxin from Gram-negative bacteria signals the innate immune system to up-regulate bacterial clearance and/or killing mechanisms. Paradoxically, such responses also contribute to septic shock, a clinical problem occurring with high frequency in Gram-negative septicemia. CD14 is a receptor for endotoxin (lipopolysaccharide, LPS) and is thought to have an essential role in innate immune responses to infection and thereby in the development of septic shock. Using a novel rabbit model of endotoxic shock produced by multiple exposures to endotoxin, we show that anti-rabbit CD14 mAb, which blocks LPS-CD14 binding, protects against organ injury and death even when the antibody is administered after initial exposures to LPS. In contrast, anti-rabbit tumor necrosis factor mAb treatment fails to protect when administered after LPS injections. These results support the concept that anti-CD14 treatment provides a new therapeutic window for the prevention of pathophysiologic changes that result from cumulative exposures to LPS during septic shock in man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive and active immunization against outer surface protein A (OspA) has been successful in protecting laboratory animals against subsequent infection with Borrelia burgdorferi. Antibodies (Abs) to OspA convey full protection, but only when they are present at the time of infection. Abs inactivate spirochetes within the tick and block their transmission to mammals, but do not affect established infection because of the loss of OspA in the vertebrate host. Our initial finding that the presence of high serum titers of anti-OspC Abs (5 to 10 μg/ml) correlates with spontaneous resolution of disease and infection in experimentally challenged immunocompetent mice suggested that therapeutic vaccination with OspC may be feasible. We now show that polyclonal and monospecific mouse immune sera to recombinant OspC, but not to OspA, of B. burgdorferi resolve chronic arthritis and carditis and clear disseminated spirochetes in experimentally infected C.B.-17 severe combined immunodeficient mice in a dose-dependent manner. This was verified by macroscopical and microscopical examination of affected tissues and recultivation of spirochetes from ear biopsies. Complete resolution of disease and infection was achieved, independent of whether OspC-specific immune sera (10 μg OspC-specific Abs) were repeatedly given (4× in 3- to 4-day intervals) before the onset (day 10 postinfection) or at the time of fully established arthritis and carditis (days 19 or 60 postinfection). The results indicate that in mice spirochetes constitutively express OspC and are readily susceptible to protective OspC-specific Abs throughout the infection. Thus, an OspC-based vaccine appears to be a candidate for therapy of Lyme disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C-mannosylation of Trp-7 in human ribonuclease 2 (RNase 2) is a novel kind of protein glycosylation that differs fundamentally from N- and O-glycosylation in the protein-sugar linkage. Previously, we established that the specificity determinant of the acceptor substrate (RNase 2) consists of the sequence W-x-x-W, where the first Trp becomes C-mannosylated. Here we investigated the reaction with respect to the mannosyl donor and the involvement of a glycosyltransferase. C-mannosylation of Trp-7 was reduced 10-fold in CHO (Chinese hamster ovary) Lec15 cells, which are deficient in dolichyl-phosphate-mannose (Dol-P-Man) synthase activity, compared with wild-type cells. This was not a result of a decrease in C-mannosyltransferase activity. Rat liver microsomes were used to C-mannosylate the N-terminal dodecapeptide from RNase 2 in vitro, with Dol-P-Man as the donor. This microsomal transferase activity was destroyed by heat and protease treatment, and displayed the same acceptor substrate specificity as the in vivo reaction studied previously. The C-C linkage between the indole and the mannosyl moiety was demonstrated by tandem electrospray mass spectrometry analysis of the product. GDP-Man, in the presence of Dol-P, functioned as a precursor in vitro with membranes from wild-type but not CHO Lec15 cells. In contrast, with Dol-P-Man both membrane preparations were equally active. It is concluded that a microsomal transferase catalyses C-mannosylation of Trp-7, and that the minimal biosynthetic pathway can be defined as: Man –> –> GDP-Man –> Dol-P-Man –> (C2-Man-)Trp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of nontoxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) are commonly known to regulate cell proliferation. However, previous reports suggest that in cultured postmitotic neurons, activation of CDKs is a signal for death rather than cell division. We determined whether CDK activation occurs in mature adult neurons during focal stroke in vivo and whether this signal was required for neuronal death after reperfusion injury. Cdk4/cyclin D1 levels and phosphorylation of its substrate retinoblastoma protein (pRb) increase after stroke. Deregulated levels of E2F1, a transcription factor regulated by pRb, are also observed. Administration of a CDK inhibitor blocks pRb phosphorylation and the increase in E2F1 levels and dramatically reduces neuronal death by 80%. These results indicate that CDKs are an important therapeutic target for the treatment of reperfusion injury after ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequisite for postmortem developmental events, including autolysis and chromatin degradation. A 40-kD serine protease is secreted during secondary cell wall synthesis, which may be the coordinating factor between secondary cell wall synthesis and PCD. Specific proteolysis of the extracellular matrix is necessary and sufficient to trigger Ca2+ influx, vacuole collapse, cell death, and chromatin degradation, suggesting that extracellular proteolysis plays a key regulatory role during PCD. We propose a model in which secondary cell wall synthesis and cell death are coordinated by the concomitant secretion of the 40-kD protease and secondary cell wall precursors. Subsequent cell death is triggered by a critical activity of protease or the arrival of substrate signal precursor corresponding with the completion of a functional secondary cell wall.