998 resultados para T lymphocyte receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using immunohistochemistry in combination with confocal laser scanning microscopy, we studied the ontogeny of neuropeptide Y-Y1 receptor (Y1-R) expression in the trigeminal system of the rat. The study was limited to the nerve fibers innervating the mystacial pad and the trigeminal ganglia. In the trigeminal ganglia, Y1-R-immunoreactive (IR) neurons were first observed at E16.5. At this same stage some nerve fibers in the trigeminal ganglia also exhibited Y1-R-like immunoreactivity (LI). Strongly Y1-R-IR nerve fibers innervating the follicles of the mystacial vibrissae were first observed at E18. After double labeling, the Y1-R-LI was found to be colocalized with the neuronal marker protein gene product 9.5. At P1 only weak labeling for the Y1-R was found around the vibrissae follicles, whereas the neurons in the trigeminal ganglia were intensely labeled. The same was true for the adult rat, but at this stage no Y1-R labeling at all was observed in nerve fibers around the vibrissal follicles. These results strongly support an axonal localization of the Y1-R at this developmental stage. The transient expression of the Y1-R during prenatal mystacial pad development suggests a role for the Y1-R in the functional development of the vibrissae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPAR) delta is a member of the nuclear hormone receptor superfamily. PPARdelta may ameliorate metabolic diseases such as obesity and diabetes. However, PPARdelta's role in colorectal carcinogenesis remains controversial. Here, we present genetic and pharmacologic evidence demonstrating that deletion of PPARdelta decreases intestinal adenoma growth in Apc(Min/+) mice and inhibits tumor-promoting effects of a PPARdelta agonist GW501516. More importantly, we found that activation of PPARdelta up-regulated VEGF in colon carcinoma cells. VEGF directly promotes colon tumor epithelial cell survival through activation of PI3K-Akt signaling. These results not only highlight concerns about the use of PPARdelta agonists for treatment of metabolic disorders in patients who are at high risk for colorectal cancer, but also support the rationale for developing PPARdelta antagonists for prevention and/or treatment of cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag-specific T-cell response, has been best described for CD8(+) T cells. In the CD8(+) compartment, the release of IFN and IFN-inducers leads to the production of IL-15, which mediates the proliferation of CD8(+) T cells, notably memory-phenotype CD8(+) T cells. CD4(+) T cells also undergo bystander activation, however, the signals inducing this Ag-nonspecific stimulation of CD4(+) T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common gamma-chain cytokines including IL-2 might be involved in bystander activation of CD4(+) T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Aspergillus fumigatus causes invasive aspergillosis, a potentially fatal infection in oncohematological patients. Innate immune detection of A. fumigatus involves Toll-like receptor (TLR) 4 and TLR2, which forms a heterodimer with either TLR1 or TLR6. The role of those coreceptors in Aspergillus sensing is unknown. Methods. Cytokine production was measured in bone marrow-derived macrophages (BMDMs) from wild-type (WT) and TLR-deficient mice after incubation with a WT and an immunogenic RodA-deficient (ΔrodA-47) strain of A. fumigatus and in lungs from these mice after intranasal mold inoculation. Aspergillus fumigatus-mediated NF-κB activation was measured in HEK293T cells transfected with plasmids expressing mouse or human TLRs. Results. Bone marrow-derived macrophages from TLR1- and TLR6-deficient mice produced lower amounts of interleukin 12p40, CXCL2, interleukin 6, and tumor necrosis factor α than BMDMs from WT mice after stimulation with A. fumigatus. Lungs from TLR1- and TLR6-deficient mice had diminished CXCL1 and CXCL2 production and increased fungal burden after intranasal inoculation of ΔrodA A. fumigatus compared with lungs from WT mice. ΔrodA strain-mediated NF-κB activation was observed in HEK293T cells expressing mouse TLR2/1, mouse TLR2/6, and human TLR2/1 but not human TLR2/6. Conclusions. Innate immune detection of A. fumigatus is mediated by TLR4 and TLR2 together with TLR1 or TLR6 in mice and TLR1 but not TLR6 in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BAFF is a B cell survival factor that binds to three receptors BAFF-R, TACI and BCMA. BAFF-R is the receptor triggering naïve B cell survival and maturation while BCMA supports the survival of plasma cells in the bone marrow. Excessive BAFF production leads to autoimmunity, presumably as the consequence of inappropriate survival of self-reactive B cells. The function of TACI has been more elusive with TACI(-/-) mice revealing two sides of this receptor, a positive one driving T cell-independent immune responses and a negative one down-regulating B cell activation and expansion. Recent work has revealed that the regulation of TACI expression is intimately linked to the activation of innate receptors on B cells and that TACI signalling in response to multimeric BAFF and APRIL provides positive signals to plasmablasts. How TACI negatively regulates B cells remains elusive but may involve an indirect control of BAFF levels. The discovery of TACI mutations associated with common variable immunodeficiency (CVID) in humans not only reinforces its important role for humoral responses but also suggests a more complex role than first anticipated from knockout animals. TACI is emerging as an unusual TNF receptor-like molecule with a sophisticated mode of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in fat tissue development and physiology. Mutations in the gene encoding this receptor have been associated to disorders in lipid metabolism. A thorough investigation of mice in which one PPARgamma allele has been mutated reveals that male PPARgamma heterozygous (PPARgamma +/-) mice exhibit a reduced body size associated with decreased body weight, reflecting lean mass reduction. This phenotype is reproduced when treating the mice with a PPARgamma- specific antagonist. Monosodium glutamate treatment, which induces weight gain and alters body growth in wild-type mice, further aggravates the growth defect of PPARgamma +/- mice. The levels of circulating GH and that of its downstream effector, IGF-I, are not altered in mutant mice. However, the IGF-I mRNA level is decreased in white adipose tissue (WAT) of PPARgamma +/- mice and is not changed by acute administration of recombinant human GH, suggesting an altered GH action in the mutant animals. Importantly, expression of the gene encoding the suppressor of cytokine signaling-2, which is an essential negative regulator of GH signaling, is strongly increased in the WAT of PPARgamma +/- mice. Although the relationship between the altered GH signaling in WAT and reduced body size remains unclear, our results suggest a novel role of PPARgamma in GH signaling, which might contribute to the metabolic disorder affecting insulin signaling in PPARgamma mutant mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: EMD 521873 (Selectikine or NHS-IL2LT) is a fusion protein consisting of modified human IL-2 which binds specifically to the high-affinity IL-2 receptor, and an antibody specific for both single- and double-stranded DNA, designed to facilitate the enrichment of IL-2 in tumor tissue. METHODS: An extensive analysis of pharmacodynamic (PD) markers associated with target modulation was assessed during a first-in-human phase I dose-escalation trial of Selectikine. RESULTS: Thirty-nine patients with metastatic or locally advanced tumors refractory to standard treatments were treated with increasing doses of Selectikine, and nine further patients received additional cyclophosphamide. PD analysis, assessed during the first two treatment cycles, revealed strong activation of both CD4+ and CD8+ T-cells and only weak NK cell activation. No dose response was observed. As expected, Treg cells responded actively to Selectikine but remained at lower frequency than effector CD4+ T-cells. Interestingly, patient survival correlated positively with both high lymphocyte counts and low levels of activated CD8+ T-cells at baseline, the latter of which was associated with enhanced T-cell responses to the treatment. CONCLUSIONS: The results confirm the selectivity of Selectikine with predominant T-cell and low NK cell activation, supporting follow-up studies assessing the clinical efficacy of Selectikine for cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To measure the average length of telomere repeats at chromosome ends in individual cells we developed a flow cytometry method using fluorescence in situ hybridization (flow FISH) with labeled peptide nucleic acid (PNA) probes. Results of flow FISH measurements correlated with results of conventional telomere length measurements by Southern blot analysis (R = 0.9). Consistent differences in telomere length in CD8+ T-cell subsets were identified. Naive and memory CD4+ T lymphocytes in normal adults differed by around 2.5 kb in telomere length, in agreement with known replicative shortening of telomeres in lymphocytes in vivo. T-cell clones grown in vitro showed stabilization of telomere length after an initial decline and rare clones capable of growing beyond 100 population doublings showed variable telomere length. These results show that flow FISH can be used to measure specific nucleotide repeat sequences in single cells and indicate that the very large replicative potential of lymphocytes is only indirectly related to telomere length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.