998 resultados para Systematics. Porifera. Evolution
Resumo:
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.
Resumo:
In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous reports presented a histogram model to simulate the evolution of populations of individuals classified into bins according to an unspecified, quantifiable phenotypic character, and whose number in each bin changed generation after generation under the influence of fitness, while the total population was maintained constant. The histogram model also allowed Shannon entropy (SE) to be monitored continuously as the information content of the total population decreased or increased. Here, a simple Perl (Practical Extraction and Reporting Language) application was developed to carry out these computations, with the critical feature of an added random factor in the percent of individuals whose offspring moved to a vicinal bin. The results of the simulations demonstrate that the random factor mimicking variation increased considerably the range of values covered by Shannon entropy, especially when the percentage of changed offspring was high. This increase in information content is interpreted as facilitated adaptability of the population.
Resumo:
To evaluate the clinical evolution of sacral stress fractures in relation to the scintigraphic pattern and the presence of additional pelvic fractures. METHODS--This was a retrospective study of 14 patients with sacral fractures. RESULTS--Six patients had additional pelvic fractures. Four bone scintigraphic patterns were found. The resolution of symptoms was longer in patients with associated pelvic fractures (30 weeks v three weeks). No relation was found between the bone scintigraphic pattern and the time of evolution. CONCLUSION--Associated pelvic fractures delay the resolution of symptoms in patients with sacral fractures, regardless of scintigraphic pattern.
Resumo:
The Lateglacial evolution of the Ticino glacier and tributaries is poorly known because of the lack of research by Quaternary geomorphologists during the last decades. In spite of the interest for the cryosphere reactions during the Lateglacial climate warming, only few scientific studies were carried out about the history of the northern valleys of the Ticino Alps during the deglaciation (e.g. Seiffert 1953, Renner 1982, Hantke 1983). Within the framework of geomorphological investigations on the Lateglacial and Holocene glacier/permafrost evolution in the Ticino Alps, the history of the Brenno glacier (Blenio Valley, Eastern Ticino Alps) during the end of the Pleistocene has been studied. The deglaciation sequence of the Blenio Valley is still not complete (Scapozza et al. 2009). Only the first glacial stadial of the Brenno glacier and the last Lateglacial stadials of the Greina region (northern Blenio valley, see Fontana et al. 2008) and of the upper Malvaglia Valley (eastern Blenio Valley, see Scapozza et al. 2008) have been unequivocally defined. For every stadial, the surface of the palaeoglacier and the depression of the Equilibrium Line Altitude (ELA) have been reconstructed on the base of geomorphological mapping. The first individual glacial stadial of the Brenno glacier corresponds to the Biasca stadial of the Ticino glacier defined by Hantke (1983). The ELA depression of 1100-1200 meters and its morphological and glaciological characteristics allow us to correlate this stadial with the Weissbad stadial defined by Keller (1988). In the Greina region, three stadials corresponding to the end of the Lateglacial have been identified, with an ELA depression of 110, 210 and 310-350 meters (Fontana et al. 2008). In the upper Malvaglia Valley, three stadials corresponding to the end of the Oldest Dryas and the Younger Dryas have been identified for the Orino glacier, with an ELA depression of 290, 400-420 and 470-560 meters (Scapozza et al. 2008). If we consider the other (fragmentary) glacial deposits of the Blenio Valley, it is possible to define a regression sequence of the Brenno glacier with 8 stadials, from the Biasca stadial to the end of the Younger Dryas. An attempt of correlation with the model "Gothard" developed by Renner (1982) and Hantke (1983) and with the model "Eastern Swiss Alps" developed by Maisch (1982) is proposed in Table 1. The following chronological conclusions are, therefore, proposed: (1) the Biasca stadial is probably the first stadial after the transition Pleniglacial - Lateglacial; (2) the stadials BRE 7 to BRE 3 are positioned between the beginning of the Lateglacial and the Bølling-Allerød interstadial; (3) the stadials BRE 2 and BRE 1 are assumed to be related to the Younger Dryas event.
Resumo:
The identity [r]evolution is happening. Who are you, who am I in the information society? In recent years, the convergence of several factors - technological, political, economic - has accelerated a fundamental change in our networked world. On a technological level, information becomes easier to gather, to store, to exchange and to process. The belief that more information brings more security has been a strong political driver to promote information gathering since September 11. Profiling intends to transform information into knowledge in order to anticipate one's behaviour, or needs, or preferences. It can lead to categorizations according to some specific risk criteria, for example, or to direct and personalized marketing. As a consequence, new forms of identities appear. They are not necessarily related to our names anymore. They are based on information, on traces that we leave when we act or interact, when we go somewhere or just stay in one place, or even sometimes when we make a choice. They are related to the SIM cards of our mobile phones, to our credit card numbers, to the pseudonyms that we use on the Internet, to our email addresses, to the IP addresses of our computers, to our profiles... Like traditional identities, these new forms of identities can allow us to distinguish an individual within a group of people, or describe this person as belonging to a community or a category. How far have we moved through this process? The identity [r]evolution is already becoming part of our daily lives. People are eager to share information with their "friends" in social networks like Facebook, in chat rooms, or in Second Life. Customers take advantage of the numerous bonus cards that are made available. Video surveillance is becoming the rule. In several countries, traditional ID documents are being replaced by biometric passports with RFID technologies. This raises several privacy issues and might actually even result in changing the perception of the concept of privacy itself, in particular by the younger generation. In the information society, our (partial) identities become the illusory masks that we choose -or that we are assigned- to interplay and communicate with each other. Rights, obligations, responsibilities, even reputation are increasingly associated with these masks. On the one hand, these masks become the key to access restricted information and to use services. On the other hand, in case of a fraud or negative reputation, the owner of such a mask can be penalized: doors remain closed, access to services is denied. Hence the current preoccupying growth of impersonation, identity-theft and other identity-related crimes. Where is the path of the identity [r]evolution leading us? The booklet is giving a glance on possible scenarios in the field of identity.
Resumo:
This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia.
Resumo:
Division of labor is a complex phenomenon observed throughout nature. Theoretical studies have focused either on its emergence through self-organization mechanisms or on its adaptive consequences. We suggest that the interaction of self-organization, which undoubtedly characterizes division of labor in social insects, and evolution should be further explored. We review the factors empirically shown to influence task choice. In light of these factors, we review the most important self-organization and evolutionary models for division of labor and outline their advantages and limitations. We describe ways to unify evolution and self-organization in the theoretical study of division of labor and recent results in this area. Finally, we discuss some benchmarks and primary challenges of this approach.
Resumo:
Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.