925 resultados para Symbolic computation and algebraic computation
Resumo:
This paper uses Shannon's information theory to give a quantitative definition of information flow in systems that transform inputs to outputs. For deterministic systems, the definition is shown to specialise to a simpler form when the information source and the known inputs jointly determine the inputs. For this special case, the definition is related to the classical security condition of non-interference and an equivalence is established between non-interference and independence of random variables. Quantitative information flow for deterministic systems is then presented in relational form. With this presentation, it is shown how relational parametricity can be used to derive upper and lower bounds on information flows through families of functions defined in the second order lambda calculus.
Resumo:
Scientific workflows are becoming a valuable tool for scientists to capture and automate e-Science procedures. Their success brings the opportunity to publish, share, reuse and repurpose this explicitly captured knowledge. Within the myGrid project, we have identified key resources that can be shared including complete workflows, fragments of workflows and constituent services. We have examined the alternative ways these can be described by their authors (and subsequent users), and developed a unified descriptive model to support their later discovery. By basing this model on existing standards, we have been able to extend existing Web Service and Semantic Web Service infrastructure whilst still supporting the specific needs of the e-Scientist. myGrid components enable a workflow life-cycle that extends beyond execution, to include discovery of previous relevant designs, reuse of those designs, and subsequent publication. Experience with example groups of scientists indicates that this cycle is valuable. The growing number of workflows and services mean more work is needed to support the user in effective ranking of search results, and to support the repurposing process.
Resumo:
O nome de Claude Elwood Shannon não é totalmente estranho aos pesquisadores de Comunicação Social. No entanto, parte de sua importância para a história da comunicação no século XX é pouco conhecida. Sua dissertação de mestrado e o artigo dela derivado (A Symbolic Analysis of Relay and Switching Circuits) foram essenciais para que o computador se tornasse uma máquina de comunicação e, conseqüentemente, penetrasse em nossa sociedade na forma como ocorre hoje. Este artigo revisa o primeiro grande trabalho de Shannon e explicita sua participação no contexto atual da comunicação.
Resumo:
This paper uses dynamic programming to study the time consistency of optimal macroeconomic policy in economies with recurring public deficits. To this end, a general equilibrium recursive model introduced in Chang (1998) is extended to include govemment bonds and production. The original mode! presents a Sidrauski economy with money and transfers only, implying that the need for govemment fmancing through the inflation tax is minimal. The extended model introduces govemment expenditures and a deficit-financing scheme, analyzing the SargentWallace (1981) problem: recurring deficits may lead the govemment to default on part of its public debt through inflation. The methodology allows for the computation of the set of alI sustainable stabilization plans even when the govemment cannot pre-commit to an optimal inflation path. This is done through value function iterations, which can be done on a computeI. The parameters of the extended model are calibrated with Brazilian data, using as case study three Brazilian stabilization attempts: the Cruzado (1986), Collor (1990) and the Real (1994) plans. The calibration of the parameters of the extended model is straightforward, but its numerical solution proves unfeasible due to a dimensionality problem in the algorithm arising from limitations of available computer technology. However, a numerical solution using the original algorithm and some calibrated parameters is obtained. Results indicate that in the absence of govemment bonds or production only the Real Plan is sustainable in the long run. The numerical solution of the extended algorithm is left for future research.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.
Resumo:
In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.
Resumo:
Monoidal logic, ML for short, which formalized the fuzzy logics of continuous t-norms and their residua, has arisen great interest, since it has been applied to fuzzy mathematics, artificial intelligence, and other areas. It is clear that fuzzy logics basically try to represent imperfect or fuzzy information aiming to model the natural human reasoning. On the other hand, in order to deal with imprecision in the computational representation of real numbers, the use of intervals have been proposed, as it can guarantee that the results of numerical computation are in a bounded interval, controlling, in this way, the numerical errors produced by successive roundings. There are several ways to connect both areas; the most usual one is to consider interval membership degrees. The algebraic counterpart of ML is ML-algebra, an interesting structure due to the fact that by adding some properties it is possible to reach different classes of residuated lattices. We propose to apply an interval constructor to ML-algebras and some of their subclasses, to verify some properties within these algebras, in addition to the analysis of the algebraic aspects of them
Resumo:
In this paper, sharp upper limit for the zeros of the ultraspherical polynomials are obtained via a result of Obrechkoff and certain explicit connection coefficients for these polynomials. As a consequence, sharp bounds for the zeros of the Hermite polynomials are obtained.
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, genetic algorithms concepts along with a rotamer library for proteins side chains and implicit solvation potential are used to optimize the tertiary structure of peptides. We starting from the known PDB structure of its backbone which is kept fixed while the side chains allowed adopting the conformations present in the rotamer library. It was used rotamer library independent of backbone and a implicit solvation potential. The structure of Mastoporan-X was predicted using several force fields with a growing complexity; we started it with a field where the only present interaction was Lennard-Jones. We added the Coulombian term and we considered the solvation effects through a term proportional to the solvent accessible area. This paper present good and interesting results obtained using the potential with solvation term and rotamer library. Hence, the algorithm (called YODA) presented here can be a good tool to the prediction problem. (c) 2007 Elsevier B.V. All rights reserved.
Predicting peptides structure with solvation potential and rotamer library dependent of the backbone
Resumo:
In this work, genetic algorithms concepts along with a rotamer library dependent of backbone and implicit solvation potential are used to study the tertiary structure of peptides. We starting from known primary sequence and optimize the structure of the backbone while the side chains allowed adopting the conformations present in a rotamer library. The GA, implemented with two force fields with a growing complexity, was used predict the structure of a polyalanine and a poly-isolueucine. This paper presents good and interesting results about the study of peptides structures and about the development of computational tools to study peptides structures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.