970 resultados para Switching circuits
Resumo:
Waveband switching (WBS) is an important technique to save switching and transmission cost in wavelength -division multiplexed (WDM) optical networks. A cost-efficient WBS scheme would enable network carriers to increase the network throughput (revenue) while achieving significant cost savings. We identify the critical factors that determine the WBS network throughput and switching cost and propose a novel intermediate waveband switching (IT-WBS) algorithm, called the minimizing-weighted-cost (MWC) algorithm. The MWC algorithm defines a cost for each candidate route of a call. By selecting the route with the smallest weighted cost, MWC balances between minimizing the call blocking probability and minimizing the network switching cost. Our simulations show that MWC outperforms other wavelength/waveband switching algorithms and can enhance the network throughput at a reduced cost.
Resumo:
Routing techniques used in wavelength routed optical networks (WRN) do not give an efficient solution with Waveband routed optical networks (WBN) as the objective of routing in WRN is to reduce the blocking probability and that in WBN is to reduce the number of switching ports. Routing in WBN can be divided two parts, finding the route and grouping the wavelength assigned into that route with some existing wavelengths/wavebands. In this paper, we propose a heuristic for waveband routing, which uses a new grouping strategy called discontinuous waveband grouping to group the wavelengths into a waveband. The main objective of our algorithm is to decrease the total number of ports required and reduce the blocking probability of the network. The performance of the heuristic is analyzed using simulation on a WBN with non-uniform wavebands.
Resumo:
Heterogeneous waveband switching (HeteroWBS) in WDM networks reduces the network operational costs. We propose an autonomous clustering-based HeteroWBS architecture to support the design of efficient HeteroWBS algorithms under dynamic traffic requests in such a network.
Resumo:
We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.
Resumo:
As wavelength-division multiplexing (WDM) evolves towards practical applications in optical transport networks, waveband switching (WBS) has been introduced to cut down the operational costs and to reduce the complexities and sizes of network components, e.g., optical cross-connects (OXCs). This paper considers the routing, wavelength assignment and waveband assignment (RWWBA) problem in a WDM network supporting mixed waveband and wavelength switching. First, the techniques supporting waveband switching are studied, where a node architecture enabling mixed waveband and wavelength switching is proposed. Second, to solve the RWWBA problem with reduced switching costs and improved network throughput, the cost savings and call blocking probabilities along intermediate waveband-routes are analyzed. Our analysis reveals some important insights about the cost savings and call blocking probability in relation to the fiber capacity, the candidate path, and the traffic load. Third, based on our analysis, an online integrated intermediate WBS algorithm (IIWBS) is proposed. IIWBS determines the waveband switching route for a call along its candidate path according to the node connectivity, the link utilization, and the path length information. In addition, the IIWBS algorithm is adaptive to real network applications under dynamic traffic requests. Finally, our simulation results show that IIWBS outperforms a previous intermediate WBS algorithm and RWA algorithms in terms of network throughput and cost efficiency.
Resumo:
Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling’s removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.
Resumo:
Due to the lack of optical random access memory, optical fiber delay line (FDL) is currently the only way to implement optical buffering. Feed-forward and feedback are two kinds of FDL structures in optical buffering. Both have advantages and disadvantages. In this paper, we propose a more effective hybrid FDL architecture that combines the merits of both schemes. The core of this switch is the arrayed waveguide grating (AWG) and the tunable wavelength converter (TWC). It requires smaller optical device sizes and fewer wavelengths and has less noise than feedback architecture. At the same time, it can facilitate preemptive priority routing which feed-forward architecture cannot support. Our numerical results show that the new switch architecture significantly reduces packet loss probability.
Resumo:
In this paper, we consider the problem of topology design for optical networks. We investigate the problem of selecting switching sites to minimize total cost of the optical network. The cost of an optical network can be expressed as a sum of three main factors: the site cost, the link cost, and the switch cost. To the best of our knowledge, this problem has not been studied in its general form as investigated in this paper. We present a mixed integer quadratic programming (MIQP) formulation of the problem to find the optimal value of the total network cost. We also present an efficient heuristic to approximate the solution in polynomial time. The experimental results show good performance of the heuristic. The value of the total network cost computed by the heuristic varies within 2% to 21% of its optimal value in the experiments with 10 nodes. The total network cost computed by the heuristic for 51% of the experiments with 10 node network topologies varies within 8% of its optimal value. We also discuss the insight gained from our experiments.
Resumo:
Purpose: This prospective randomized matched-pair controlled trial aimed to evaluate marginal bone levels and soft tissue alterations at implants restored according to the platform-switching concept with a new inward-inclined platform and compare them with external-hexagon implants. Materials and Methods: Traditional external-hexagon (control group) implants and inward-inclined platform implants (test group), all with the same implant body geometry and 13 mm in length, were inserted in a standardized manner in the posterior maxillae of 40 patients. Radiographic bone levels were measured by two independent examiners after 6, 12, and 18 months of prosthetic loading. Buccal soft tissue height was measured at the time of abutment connection and 18 months later. Results: After 18 months of loading, all 80 implants were clinically osseointegrated in the 40 participating patients. Radiographic evaluation showed mean bone losses of 0.5 +/- 0.1 mm (range, 0.3 to 0.7 mm) and 1.6 +/- 0.3 mm (range, 1.1 to 2.2 mm) for test and control implants, respectively. Soft tissue height showed a significant mean decrease of 2.4 mm in the control group, compared to 0.6 mm around the test implants. Conclusions: After 18 months, significantly greater bone loss was observed at implants restored according to the conventional external-hexagon protocol compared to the platform-switching concept. In addition, decreased soft tissue height was associated with the external-hexagon implants versus the platform-switched implants. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:927-934.
Resumo:
This new and general method here called overflow current switching allows a fast, continuous, and smooth transition between scales in wide-range current measurement systems, like electrometers. This is achieved, using a hydraulic analogy, by diverting only the overflow current, such that no slow element is forced to change its state during the switching. As a result, this approach practically eliminates the long dead time in low-current (picoamperes) switching. Similar to a logarithmic scale, a composition of n adjacent linear scales, like a segmented ruler, measures the current. The use of a linear wide-range system based on this technique assures fast and continuous measurement in the entire range, without blind regions during transitions and still holding suitable accuracy for many applications. A full mathematical development of the method is given. Several computer realistic simulations demonstrated the viability of the technique.
Resumo:
Objective: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. Methods: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Resumo:
OBJECTIVE: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. METHODS: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. CONCLUSIONS: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
Programa de doctorado: Tecnologías de Telecomunicación Avanzadas