940 resultados para Switch allocations
Resumo:
Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.
Resumo:
A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature T-th can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature T-th variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 mu m CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature T(th)s from 45-120 degrees C with a 5 degrees C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm(2) and power consumption is 3.1 mu A at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.
Resumo:
A passively mode-locked all-solid-state YVO4/Nd:YVO4 composite crystal laser was realized with a low temperature (LT) In0.25Ga0.75As semiconductor saturable absorber mirror. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Both the Q-switch and continous-wave mode locking operation were experimentally realized. At a pump power of 4 W, the Q-switched mode locking changed to continuous wave mode locking. An average output power of 4.1 W with 5 ps pulse width was achieved at the pump power of 12 W, corresponding to an optical-optical conversion efficiency of 34.2%.
Resumo:
Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Serniconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850 similar to 900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 10(11) cm(-2) were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with eta of 34.4% and FWHM of 27 nut were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 16x16 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 4x4 SOI rearrangeable nonblocking TO switch matrix, rising and failing time is 970 and 750 ns, respectively.
Resumo:
The generation of passively Q-switched mode-locking operation with 100% modulation depth has been observed from a diode-pumped Nd GdVO4 laser with a low temperature In0.25Ga0.75As saturable absorber, which was grown by the metal-organic chemical-vapor deposition technique and acted as saturable absorber as well as output coupler. The repetition rate and pulse duration of the mode-locked pulses concentrated in the Q-switch envelop were 455 MHz and 12 ps, respectively. The average output power was 1.8 W and the slope efficiency was 36%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000 x 500 mu m(2). The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper. (C) 2009 Optical Society of America
Resumo:
We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.
Resumo:
A rearrangeable nonblocking thermo-optic 4 x 4 switching matrix is demonstrated. The matrix, which consists of five 2 x 2 multimode interference-based Mach-Zehnder interferometer (MMI-MZI) switch elements, is fabricated in silicon-on-insulator waveguide system. The average excess loss for the optical path experiencing 2 and 3 switch elements is 6.6 and 10.1 dB respectively. The crosstalk in the matrix is measured to be between -12 and -19 dB. The switching time of the device is less than 30 mu s.
Resumo:
The temperature dependence of silicon-on-insulator thermo-optic attenuators is analysed, which originates from the temperature dependence of characteristics of multimode interference. The attenuator depth and power consumption are independent of temperature while the insertion loss depends on the temperature heavily. The variation of the insertion loss decreases from 4.3 dB to 1 dB as the temperature increases from 273 K to 343 K.
Resumo:
Ten-period 5.5 nm Si0.75Ge0.25/10.3 nm Si/2.5 nm Si0.5Ge0.5 trilayer asymmetric superlattice was prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The stability of Mach-Zehnder interferometer was improved by utilizing polarization-maintaining fibers. According to the electro-optic responses of the superlattice with the light polarization along [110] and [-110], respectively, both electro-optic coefficients gamma(13) and gamma(63) of such asymmetric superlattice were measured. gamma(13) and gamma(63) are 2.4x10(-11) and 1.3x10(-11) cm/V, respectively, with the incident light wavelength at 1.55 mu m. (c) 2006 American Institute of Physics.
Resumo:
We report, for the first time to the best of our knowledge, on a passively Q-switched Nd:YVO4 laser with a GaAs absorber grown at low temperature (LT) by metal organic vapor phase expitaxy. Using the LT GaAs absorber as well as an output coupler, a passively Q-switched laser whose pulse duration is as short as 90 ns, was obtained.
Resumo:
Peculiar current jumps and hysteresis in current-voltage curves are reported in an illuminated heterostructure consisting basically of a thick AlAs layer and a narrow GaAs quantum well. These novel features come from the photon-assisted transfer of electron-hole pairs and the resultant charge polarization in the structure, mainly caused by the resonant Gamma-X coupling at the heterointerfaces. Using the transfer-matrix method, the simulated current density-voltage curve reproduces the main features of the experimental observations in the case where the influence of resonant Gamma-X coupling at the heterointerfaces is included, further confirming the physical mechanism involved. The structure presented here may be used as a new type of photonic memory cell and also as an optically controlled switch.
Resumo:
Modulation arms with different widths are introduced to Mach-Zehnder interferometers (MZIs) to obtain improved performance. Theoretical analysis and numerical simulation have shown that when the widths of the two arms are properly designed to achieve an inherent m pi/2 (m is an odd integer) optical phase difference between the arms, the asymmetric MZI presents higher modulation speed. Furthermore, the carrier-absorption induced divergence of insertion losses in silicon-on-insulator (SOI) based MZI optical switches can be obviously improved.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
The transmission through coupled quantum dots (CQDs) is calculated using the coupled-channel recursion method. Our results reveal that the conductance peaks move to high energy as the CQDs radius decreases or the period increases. If we increase the transverse momentum the conductance peaks move to high energy. Applying this characteristic, we can design a switch device using CQDs by applying a static electric field perpendicular to transmission direction. The theoretical results qualitatively agree with the available experimental data. Our calculated results may be useful for the application of CQDs to photoelectric devices. (C) 2003 American Institute of Physics.