931 resultados para Survival.
Resumo:
Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.
Resumo:
We propose a new method for fitting proportional hazards models with error-prone covariates. Regression coefficients are estimated by solving an estimating equation that is the average of the partial likelihood scores based on imputed true covariates. For the purpose of imputation, a linear spline model is assumed on the baseline hazard. We discuss consistency and asymptotic normality of the resulting estimators, and propose a stochastic approximation scheme to obtain the estimates. The algorithm is easy to implement, and reduces to the ordinary Cox partial likelihood approach when the measurement error has a degenerative distribution. Simulations indicate high efficiency and robustness. We consider the special case where error-prone replicates are available on the unobserved true covariates. As expected, increasing the number of replicate for the unobserved covariates increases efficiency and reduces bias. We illustrate the practical utility of the proposed method with an Eastern Cooperative Oncology Group clinical trial where a genetic marker, c-myc expression level, is subject to measurement error.
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
Suppose that having established a marginal total effect of a point exposure on a time-to-event outcome, an investigator wishes to decompose this effect into its direct and indirect pathways, also know as natural direct and indirect effects, mediated by a variable known to occur after the exposure and prior to the outcome. This paper proposes a theory of estimation of natural direct and indirect effects in two important semiparametric models for a failure time outcome. The underlying survival model for the marginal total effect and thus for the direct and indirect effects, can either be a marginal structural Cox proportional hazards model, or a marginal structural additive hazards model. The proposed theory delivers new estimators for mediation analysis in each of these models, with appealing robustness properties. Specifically, in order to guarantee ignorability with respect to the exposure and mediator variables, the approach, which is multiply robust, allows the investigator to use several flexible working models to adjust for confounding by a large number of pre-exposure variables. Multiple robustness is appealing because it only requires a subset of working models to be correct for consistency; furthermore, the analyst need not know which subset of working models is in fact correct to report valid inferences. Finally, a novel semiparametric sensitivity analysis technique is developed for each of these models, to assess the impact on inference, of a violation of the assumption of ignorability of the mediator.
Resumo:
It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial.
Resumo:
A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.