984 resultados para Surface-initiated polymerization
Resumo:
Over the past decade, various implantable devices have been developed to treat diseases that were previously difficult to manage such diabetes, chronic pain, and neurodegenerative disorders. However, translation of these novel technologies into clinical practice is often difficult because fibrotic encapsulation and/or rejection impairs device function after body implantation. Ideally, cells of the host tissue should perceive the surface of the implant being similar to the normal extracellular matrix. Here, we developed an innovative approach to provide implant surfaces with adhesive protein micropatterns. The patterns were designed to promote adhesion of fibroblasts and macrophages by simultaneously suppressing fibrogenic activation of both cell types. In a rat model, subcutaneously implanted silicone pads provided with the novel micropatterns caused 6-fold lower formation of inflammatory giant cells compared with clinical grade, uncoated, or collagen-coated silicone implants. We further show that micropatterning of implants resulted in 2-3-fold reduced numbers of pro-fibrotic myofibroblast by inhibiting their mechanical activation. Our novel approach allows controlled cell attachment to implant surfaces, representing a critical advance for enhanced biointegration of implantable medical devices.
Resumo:
In order to improve the efficacy and safety of treatments, drug dosage needs to be adjusted to the actual needs of each patient in a truly personalized medicine approach. Key for widespread dosage adjustment is the availability of point-of-care devices able to measure plasma drug concentration in a simple, automated, and cost-effective fashion. In the present work, we introduce and test a portable, palm-sized transmission-localized surface plasmon resonance (T-LSPR) setup, comprised of off-the-shelf components and coupled with DNA-based aptamers specific to the antibiotic tobramycin (467 Da). The core of the T-LSPR setup are aptamer-functionalized gold nanoislands (NIs) deposited on a glass slide covered with fluorine-doped tin oxide (FTO), which acts as a biosensor. The gold NIs exhibit localized plasmon resonance in the visible range matching the sensitivity of the complementary metal oxide semiconductor (CMOS) image sensor employed as a light detector. The combination of gold NIs on the FTO substrate, causing NIs size and pattern irregularity, might reduce the overall sensitivity but confers extremely high stability in high-ionic solutions, allowing it to withstand numerous regeneration cycles without sensing losses. With this rather simple T-LSPR setup, we show real-time label-free detection of tobramycin in buffer, measuring concentrations down to 0.5 μM. We determined an affinity constant of the aptamer-tobramycin pair consistent with the value obtained using a commercial propagating-wave based SPR. Moreover, our label-free system can detect tobramycin in filtered undiluted blood serum, measuring concentrations down to 10 μM with a theoretical detection limit of 3.4 μM. While the association signal of tobramycin onto the aptamer is masked by the serum injection, the quantification of the captured tobramycin is possible during the dissociation phase and leads to a linear calibration curve for the concentrations over the tested range (10-80 μM). The plasmon shift following surface binding is calculated in terms of both plasmon peak location and hue, with the latter allowing faster data elaboration and real-time display of the results. The presented T-LSPR system shows for the first time label-free direct detection and quantification of a small molecule in the complex matrix of filtered undiluted blood serum. Its uncomplicated construction and compact size, together with the remarkable performances, represent a leap forward toward effective point-of-care devices for therapeutic drug concentration monitoring.
Resumo:
We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.
Resumo:
We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 x 1 m digital elevation model, and a 15 x 15 m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m(-3), with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m-3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and NM) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Resumo:
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization, taking into account temperature, applied field, core and surface anisotropy, and dipolar interparticle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of γ-Fe2O3 nanoparticle assemblies in the low concentration limit.
Resumo:
La spectroscopie infrarouge (FTIR) est une technique de choix dans l'analyse des peintures en spray (traces ou bonbonnes de référence), grâce à son fort pouvoir discriminant, sa sensibilité, et ses nombreuses possibilités d'échantillonnage. La comparaison des spectres obtenus est aujourd'hui principalement faite visuellement, mais cette procédure présente des limitations telles que la subjectivité de la prise de décision car celle-ci dépend de l'expérience et de la formation suivie par l'expert. De ce fait, de faibles différences d'intensités relatives entre deux pics peuvent être perçues différemment par des experts, même au sein d'un même laboratoire. Lorsqu'il s'agit de justifier ces différences, certains les expliqueront par la méthode analytique utilisée, alors que d'autres estimeront plutôt qu'il s'agit d'une variabilité intrinsèque à la peinture et/ou à son vécu (par exemple homogénéité, sprayage, ou dégradation). Ce travail propose d'étudier statistiquement les différentes sources de variabilité observables dans les spectres infrarouges, de les identifier, de les comprendre et tenter de les minimiser. Le deuxième objectif principal est de proposer une procédure de comparaison des spectres qui soit davantage transparente et permette d'obtenir des réponses reproductibles indépendamment des experts interrogés. La première partie du travail traite de l'optimisation de la mesure infrarouge et des principaux paramètres analytiques. Les conditions nécessaires afin d'obtenir des spectres reproductibles et minimisant la variation au sein d'un même échantillon (intra-variabilité) sont présentées. Par la suite une procédure de correction des spectres est proposée au moyen de prétraitements et de sélections de variables, afin de minimiser les erreurs systématiques et aléatoires restantes, et de maximiser l'information chimique pertinente. La seconde partie présente une étude de marché effectuée sur 74 bonbonnes de peintures en spray représentatives du marché suisse. Les capacités de discrimination de la méthode FTIR au niveau de la marque et du modèle sont évaluées au moyen d'une procédure visuelle, et comparées à diverses procédures statistiques. Les limites inférieures de discrimination sont testées sur des peintures de marques et modèles identiques mais provenant de différents lots de production. Les résultats ont montré que la composition en pigments était particulièrement discriminante, à cause des étapes de corrections et d'ajustement de la couleur subies lors de la production. Les particularités associées aux peintures en spray présentes sous forme de traces (graffitis, gouttelettes) ont également été testées. Trois éléments sont mis en évidence et leur influence sur le spectre infrarouge résultant testée : 1) le temps minimum de secouage nécessaire afin d'obtenir une homogénéité suffisante de la peinture et, en conséquence, de la surface peinte, 2) la dégradation initiée par le rayonnement ultra- violet en extérieur, et 3) la contamination provenant du support lors du prélèvement. Finalement une étude de population a été réalisée sur 35 graffitis de la région lausannoise et les résultats comparés à l'étude de marché des bonbonnes en spray. La dernière partie de ce travail s'est concentrée sur l'étape de prise de décision lors de la comparaison de spectres deux-à-deux, en essayant premièrement de comprendre la pratique actuelle au sein des laboratoires au moyen d'un questionnaire, puis de proposer une méthode statistique de comparaison permettant d'améliorer l'objectivité et la transparence lors de la prise de décision. Une méthode de comparaison basée sur la corrélation entre les spectres est proposée, et ensuite combinée à une évaluation Bayesienne de l'élément de preuve au niveau de la source et au niveau de l'activité. Finalement des exemples pratiques sont présentés et la méthodologie est discutée afin de définir le rôle précis de l'expert et des statistiques dans la procédure globale d'analyse des peintures. -- Infrared spectroscopy (FTIR) is a technique of choice for analyzing spray paint speciments (i.e. traces) and reference samples (i.e. cans seized from suspects) due to its high discriminating power, sensitivity and sampling possibilities. The comparison of the spectra is currently carried out visually, but this procedure has limitations such as the subjectivity in the decision due to its dependency on the experience and training of the expert. This implies that small differences in the relative intensity of two peaks can be perceived differently by experts, even between analysts working in the same laboratory. When it comes to justifying these differences, some will explain them by the analytical technique, while others will estimate that the observed differences are mostly due to an intrinsic variability from the paint sample and/or its acquired characteristics (for example homogeneity, spraying, or degradation). This work proposes to statistically study the different sources of variability observed in infrared spectra, to identify them, understand them and try to minimize them. The second goal is to propose a procedure for spectra comparison that is more transparent, and allows obtaining reproducible answers being independent from the expert. The first part of the manuscript focuses on the optimization of infrared measurement and on the main analytical parameters. The necessary conditions to obtain reproducible spectra with a minimized variation within a sample (intra-variability) are presented. Following that a procedure of spectral correction is then proposed using pretreatments and variable selection methods, in order to minimize systematic and random errors, and increase simultaneously relevant chemical information. The second part presents a market study of 74 spray paints representative of the Swiss market. The discrimination capabilities of FTIR at the brand and model level are evaluated by means of visual and statistical procedures. The inferior limits of discrimination are tested on paints coming from the same brand and model, but from different production batches. The results showed that the pigment composition was particularly discriminatory, because of the corrections and adjustments made to the paint color during its manufacturing process. The features associated with spray paint traces (graffitis, droplets) were also tested. Three elements were identified and their influence on the resulting infrared spectra were tested: 1) the minimum shaking time necessary to obtain a sufficient homogeneity of the paint and subsequently of the painted surface, 2) the degradation initiated by ultraviolet radiation in an exterior environment, and 3) the contamination from the support when paint is recovered. Finally a population study was performed on 35 graffitis coming from the city of Lausanne and surroundings areas, and the results were compared to the previous market study of spray cans. The last part concentrated on the decision process during the pairwise comparison of spectra. First, an understanding of the actual practice among laboratories was initiated by submitting a questionnaire. Then, a proposition for a statistical method of comparison was advanced to improve the objectivity and transparency during the decision process. A method of comparison based on the correlation between spectra is proposed, followed by the integration into a Bayesian framework at both source and activity levels. Finally, some case examples are presented and the recommended methodology is discussed in order to define the role of the expert as well as the contribution of the tested statistical approach within a global analytical sequence for paint examinations.
Resumo:
In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
Resumo:
Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.
Resumo:
The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT). Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel.
Resumo:
The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.
Resumo:
Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.