963 resultados para Subunits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammals are unable to synthesize cobalamin or vitamin B12 and rely on the uptake of dietary cobalamin. The cubam receptor expressed on the intestinal endothelium is required for the uptake of cobalamin from the gut. Cubam is composed of two protein subunits, amnionless and cubilin, which are encoded by the AMN and CUBN genes respectively. Loss-of-function mutations in either the AMN or the CUBN gene lead to hereditary selective cobalamin malabsorption or Imerslund-Gräsbeck syndrome (IGS). We investigated Beagles with IGS and resequenced the whole genome of one affected Beagle at 15× coverage. The analysis of the AMN and CUBN candidate genes revealed a homozygous deletion of a single cytosine in exon 8 of the CUBN gene (c.786delC). This deletion leads to a frameshift and early premature stop codon (p.Asp262Glufs*47) and is, thus, predicted to represent a complete loss-of-function allele. We tested three IGS-affected and 89 control Beagles and found perfect association between the IGS phenotype and the CUBN:c.786delC variant. Given the known role of cubilin in cobalamin transport, which has been firmly established in humans and dogs, our data strongly suggest that the CUBN:c.786delC variant is causing IGS in the investigated Beagles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Reconstruction of defects of the lateral nasal ala might be challenging. Reconstruction with a bi- or trilobed flap is common. The laterally based bi- or trilobed flap for defects of the distal ala or lateral tip of the nose produces mostly tissue protrusion in the nasal groove which is aesthetically unpleasant. Why not use more the medially based bi- or trilobed flap? OBJECTIVE To describe the utility of bilobed and trilobed flaps for alar defects insisting on the design of medially based flaps. METHODS To show the technique and practical application for this kind of reconstruction. RESULTS The bi- and trilobed flaps are useful for defect repair between the lateral nasal tip and the distal ala. We observed that in most cases the flap based medially respects anatomical subunits better than the laterally based flap for medium-sized defects of the distal ala of the nose. CONCLUSION I suggest that the bi- and trilobed flaps for repair of the lateral tip/distal ala should more often be medially based. This flap has a specific indication and precise advantage compared to other reconstructions, especially to the laterally based multilobed flaps in this specific indication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. RESULTS Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. CONCLUSIONS We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapeutic drugs kill cancer cells, but it is unclear why this happens in responding patients but not in non-responders. Proteomic profiles of patients with oesophageal adenocarcinoma may be helpful in predicting response and selecting more effective treatment strategies. In this study, pretherapeutic oesophageal adenocarcinoma biopsies were analysed for proteomic changes associated with response to chemotherapy by MALDI imaging mass spectrometry. Resulting candidate proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated for functional relevance in vitro. Clinical impact was validated in pretherapeutic biopsies from an independent patient cohort. Studies on the incidence of these defects in other solid tumours were included. We discovered that clinical response to cisplatin correlated with pre-existing defects in the mitochondrial respiratory chain complexes of cancer cells, caused by loss of specific cytochrome c oxidase (COX) subunits. Knockdown of a COX protein altered chemosensitivity in vitro, increasing the propensity of cancer cells to undergo cell death following cisplatin treatment. In an independent validation, patients with reduced COX protein expression prior to treatment exhibited favourable clinical outcomes to chemotherapy, whereas tumours with unchanged COX expression were chemoresistant. In conclusion, previously undiscovered pre-existing defects in mitochondrial respiratory complexes cause cancer cells to become chemosensitive: mitochondrial defects lower the cells' threshold for undergoing cell death in response to cisplatin. By contrast, cancer cells with intact mitochondrial respiratory complexes are chemoresistant and have a high threshold for cisplatin-induced cell death. This connection between mitochondrial respiration and chemosensitivity is relevant to anticancer therapeutics that target the mitochondrial electron transport chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: IL23 is involved in chronic inflammation but its role in cancer progression is not fully elucidated. Here we characterize IL23 subunits p40, p19 and IL23 receptor (IL23R) in the normal-adenoma-carcinomametastasis cascade of colorectal cancers and their relationship to clinicopathological and outcome data. Method: Immunohistochemistry for IL23R, IL12p40, IL23 and IL23p19 (monoclonal) was performed on a multi-punch tissue microarray (n=213 patients). Expression differences between normal-adenomas-cancerslymph nodes were evaluated. Correlation with clinicopathological and outcome data was undertaken. Results were validated on an independent cohort (n=341 patients). Results: An increased expression from normal-adenoma-cancer was observed (p<0.0001; all) followed by a marked reduction in lymph nodes (p<0.0001; all). Cytoplasmic and/or membranous staining of all markers was unrelated to outcome. Nuclear IL23p19 staining occurred in 23.1%and was associated with smaller tumor diameter (p=0.0333), early pT (p=0.0213), early TNM (p=0.0186), absence of vascular (p=0.0124) and lymphatic invasion (p=0.01493) and favorable survival (univariate (p=0.014) and multivariable (p=0.0321) analysis). All IL23p19 positive patients were free of distant metastasis (p=0.0146). Survival and metastasis results could be validated in Cohort 2. Conclusion: The presence of nuclear IL23p19 is related to indolent tumor features and favorable outcome supporting a more ‘protective’ role of this protein in colorectal cancer progression

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exosome is a 3’ to 5’ exoribonuclease complex that consists of ten essential subunits. In the cytoplasm, the exosome degrades mRNA in a general mRNA turnover pathway and in several mRNA surveillance pathways. In the nucleus, the exosome processes RNA precursors to form small, stable, mature RNA species, including rRNA, snRNA, and snoRNA. In addition to processing these RNAs, the nuclear exosome is also involved in degrading aberrantly processed forms of these RNAs, and others, including mRNA. The 3’ to 5’ exoribonuclease activity of the exosome is contributed by the RNB domain of the only catalytically active subunit, Rrp44p, a member of the RNase II family of enzymes. In addition to the RNB domain, Rrp44p consists of three putative RNA binding domains and has an uncharacterized N-terminus, which includes a CR3 region and PIN domain. In an effort to characterize the cellular functions of the domains of Rrp44p, this study identified a second nuclease active site in the PIN domain. Specifically, the PIN domain exhibits endoribonuclease activity in vitro and is essential for exosome function. Further analysis of the nuclease activities of Rrp44p indicate a role for the exoribonuclease activity of Rrp44p in the cytoplasmic and nuclear exosome. This work has also characterized the CR3 region of Rrp44p, a region that has not yet been characterized in any other protein. This region is needed for the majority, if not all, of the cytoplasmic exosome functions as well as for interaction with the exosome. The CR3 region, along with a histidine residue in the N-terminus of Rrp44p, may coordinate a zinc atom. Preliminary evidence supports a role for this coordination in exosome function. Further investigation, however, is needed to determine the molecular dependence of the exosome on the CR3 region of Rrp44p. Despite its initial discovery thirteen years ago, the essential function of Rrp44p, and the exosome, is not yet known. The studies presented here, however, indicate that the essential function of Rrp44p and the exosome is in the nucleus and depends on the nuclease activities of Rrp44p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historical reports from the 17th Century document two destructive tsunamis with runups exceeding 5 m, affecting proximal basins of Lake Lucerne (Switzerland). One event in AD 1601 is coeval with a strong nearby earthquake (MW ca 5.9), which caused extensive slope failures in many parts of the lake. The second event in AD 1687 is associated with an apparently spontaneous partial collapse of the Muota river delta. This study combines high-resolution bathymetry, reflection seismic and lithological data in order to document the sedimentary and morphological signatures of the two subaqueous mass movements that probably generated the observed tsunamis. Such mass movements are significant as a common sedimentation process and as natural hazard in fjord-type lakes and similar environments. The deposits, covering large parts of the basins with thicknesses reaching >10 m, consist of two subunits: A lower ‘massflow deposit’ contains variably deformed sediments from the source areas. Its emplacement affected pre-existing sediments, incorporating thin sediment slices into the deposit and increasing its volume. Deep-reaching deformation near This is an Accepted Article that has been peer-reviewed and approved for publication in the Sedimentology, but has yet to undergo copy-editing and proof correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The VirB/D4 type IV secretion system (T4SS) of Agrobacterium tumefaciens functions to transfer substrates to infected plant cells through assembly of a translocation channel and a surface structure termed a T-pilus. This thesis is focused on identifying contributions of VirB10 to substrate transfer and T-pilus formation through a mutational analysis. VirB10 is a bitopic protein with several domains, including a: (i) cytoplasmic N-terminus, (ii) single transmembrane (TM) α-helix, (iii) proline-rich region (PRR), and (iv) large C-terminal modified β-barrel. I introduced cysteine insertion and substitution mutations throughout the length of VirB10 in order to: (i) test a predicted transmembrane topology, (ii) identify residues/domains contributing to VirB10 stability, oligomerization, and function, and (iii) monitor structural changes accompanying energy activation or substrate translocation. These studies were aided by recent structural resolution of a periplasmic domain of a VirB10 homolog and a ‘core’ complex composed of homologs of VirB10 and two outer membrane associated subunits, VirB7 and VirB9. By use of the substituted cysteine accessibility method (SCAM), I confirmed the bitopic topology of VirB10. Through phenotypic studies of Ala-Cys insertion mutations, I identified “uncoupling” mutations in the TM and β-barrel domains that blocked T-pilus assembly but permitted substrate transfer. I showed that cysteine replacements in the C-terminal periplasmic domain yielded a variety of phenotypes in relation to protein accumulation, oligomerization, substrate transfer, and T-pilus formation. By SCAM, I also gained further evidence that VirB10 adopts different structural states during machine biogenesis. Finally, I showed that VirB10 supports substrate transfer even when its TM domain is extensively mutagenized or substituted with heterologous TM domains. By contrast, specific residues most probably involved in oligomerization of the TM domain are required for biogenesis of the T-pilus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a Western blot analysis of cell surface extracts from E. faecium, suggesting that EbpC(fm) is polymerized into a pilus structure. Further analysis of the transcripts of the corresponding gene cluster indicated that fms1 (ebpA(fm)), fms5 (ebpB(fm)) and ebpC(fm) are co-transcribed, a result consistent with those for pilus-encoding gene clusters of other Gram-positive bacteria. All 15 genes occurred frequently in 30 clinically derived diverse E. faecium isolates tested. The common occurrence of MSCRAMM- and pilus-encoding genes and the presence of a second collagen-binding protein may have important implications for our understanding of this emerging pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SET domain protein lysine methyltransferases (PKMT) are a structurally unique class of enzymes that catalyze the specific methylation of lysine residues in a number of different substrates. Especially histone-specific SET domain PKMTs have received widespread attention because of their roles in the regulation of epigenetic gene expression and the development of some cancers. Rubisco large subunit methyltransferase (RLSMT) is a chloroplast-localized SET domain PKMT responsible for the formation of trimethyl-lysine-14 in the large subunit of Rubisco, an essential photosynthetic enzyme. Here, we have used cryoelectron microscopy to produce an 11-A density map of the Rubisco-RLSMT complex. The atomic model of the complex, obtained by fitting crystal structures of Rubisco and RLSMT into the density map, shows that the extensive contact regions between the 2 proteins are mainly mediated by hydrophobic residues and leucine-rich repeats. It further provides insights into potential conformational changes that may occur during substrate binding and catalysis. This study presents the first structural analysis of a SET domain PKMT in complex with its intact polypeptide substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.