987 resultados para Structural complexity
Resumo:
OBJECTIVE: To investigate potential abnormalities in subcortical brain structures in conversion disorder (CD) compared with controls using a region of interest (ROI) approach. METHODS: Fourteen patients with motor CD were compared with 31 healthy controls using high-resolution MRI scans with an ROI approach focusing on the basal ganglia, thalamus and amygdala. Brain volumes were measured using Freesurfer, a validated segmentation algorithm. RESULTS: Significantly smaller left thalamic volumes were found in patients compared with controls when corrected for intracranial volume. These reductions did not vary with handedness, laterality, duration or severity of symptoms. CONCLUSIONS: These differences may reflect a primary disease process in this area or be secondary effects of the disorder, for example, resulting from limb disuse. Larger, longitudinal structural imaging studies will be required to confirm the findings and explore whether they are primary or secondary to CD.
Resumo:
The aim of a large number of studies on G protein-coupled receptors was centered on understanding the structural basis of their main functional properties. Here, we will briefly review the results obtained on the alpha1-adrenergic receptor subtypes belonging to the rhodopsin-like family of receptors. These findings contribute, on the one hand, to further understand the molecular basis of adrenergic transmission and, on the other, to provide some generalities on the structure-functional relationship of G protein-coupled receptors.
Resumo:
MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer-aided diagnosis. This work proposes a fully-automatic method for measuring image quality of three-dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T(1)-weighted 1.5T and 3T head scans acquired at 36 Alzheimer's Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore.
Resumo:
Large slope failures in fractured rocks are often controlled by the combination of pre-existing tectonic fracturing and brittle failure propagation in the intact rock mass during the pre-failure phase. This study focuses on the influence of fold-related fractures and of post-folding fractures on slope instabilities with emphasis on Turtle Mountain, located in SW Alberta (Canada). The structural features of Turtle Mountain, especially to the south of the 1903 Frank Slide, were investigated using a high-resolution digital elevation model combined with a detailed field survey. These investigations allowed the identification of six main discontinuity sets influencing the slope instability and surface morphology. According to the different deformation phases affecting the area, the potential origin of the detected fractures was assessed. Three discontinuity sets are correlated with the folding phase and the others with post-folding movements. In order to characterize the rock mass quality in the different portions of the Turtle Mountain anticline, the geological strength index (GSI) has been estimated. The GSI results show a decrease in rock mass quality approaching the fold hinge area due to higher fracture persistence and higher weathering. These observations allow us to propose a model for the potential failure mechanisms related to fold structures.
Resumo:
This paper presents field, petrographic-structural and geochemical data on spinet and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinet lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musine. Field evidence indicates that pristine porphyroclastic spinet lherzolites are transformed to coarse granular spinet harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinet harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinet harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1-5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinet peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musine, coarse granular spinet harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinet harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes. Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the ``asthenospheric scenario'' proposed by previous authors. We envisage a ``transitional scenario'' in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
New geochronological data which clarify the timing of syn-orogenic magmatism and regional metamorphism in the Connemara Dalradian are presented. U-Pb zircon data on four intermediate to acid foliated magmatic rocks show important inherited components but the most concordant fractions demonstrate that major magmatism continued until 465 Ma whereas the earliest, basic magmatism has been dated previously at 490 Ma; a fine-grained, fabric-cutting granite contains discordant zircons which also appear to be 465 Ma old. Are magmatism in Connemara therefore spanned a period of at least 25 Ma. Recent U-Pb data on titanite from central Connemara which gave a peak metamorphic age of 478 Ma are supplemented by U-Pb data on titanite and monazite from metamorphic veins in the east of Connemara which indicate that low-P, high-T regional metamorphism ism continued there to 465 Ma, i.e. at least 10 Ma later than in the central region dated previously. New Rb-Sr data on muscovites from coarse-grained segregations in different structural settings range from 475 to 435 Ma; in part this range probably also reflects differences in age from west to east, with three ages close to 455 Ma from the eastern area, which is also the site of the lowest pressure metamorphism. Thermal modelling indicates that at any one locality the duration of metamorphism was probably as little as 1-2 Ma. The new dates emphasize the complexity in the spatial and temporal distribution of high-level regional metamorphism caused by magmatic activity. The relatively simple overall distribution of mineral-appearance isograds revealed by regional mapping masks the complexity of a prolonged but punctuated metamorphic history related to multiple intrusions, primarily in the southern part of Connemara. The later stages of magmatic activity followed progressive uplift and erosion after the onset of magmatism, and were localized in the eastern part of the region.
Resumo:
Hepatitis C virus (HCV) nonstructural protein 5B (NS5B), the viral RNA-dependent RNA polymerase (RdRp), is a tail-anchored protein with a highly conserved C-terminal transmembrane domain (TMD) that is required for the assembly of a functional replication complex. Here, we report that the TMD of the HCV RdRp can be functionally replaced by a newly identified analogous membrane anchor of the GB virus B (GBV-B) NS5B RdRp. Replicons with a chimeric RdRp consisting of the HCV catalytic domain and the GBV-B membrane anchor replicated with reduced efficiency. Compensatory amino acid changes at defined positions within the TMD improved the replication efficiency of these chimeras. These observations highlight a conserved structural motif within the TMD of the HCV NS5B RdRp that is required for RNA replication.
Resumo:
This work consists of three essays investigating the ability of structural macroeconomic models to price zero coupon U.S. government bonds. 1. A small scale 3 factor DSGE model implying constant term premium is able to provide reasonable a fit for the term structure only at the expense of the persistence parameters of the structural shocks. The test of the structural model against one that has constant but unrestricted prices of risk parameters shows that the exogenous prices of risk-model is only weakly preferred. We provide an MLE based variance-covariance matrix of the Metropolis Proposal Density that improves convergence speeds in MCMC chains. 2. Affine in observable macro-variables, prices of risk specification is excessively flexible and provides term-structure fit without significantly altering the structural parameters. The exogenous component of the SDF is separating the macro part of the model from the term structure and the good term structure fit has as a driving force an extremely volatile SDF and an implied average short rate that is inexplicable. We conclude that the no arbitrage restrictions do not suffice to temper the SDF, thus there is need for more restrictions. We introduce a penalty-function methodology that proves useful in showing that affine prices of risk specifications are able to reconcile stable macro-dynamics with good term structure fit and a plausible SDF. 3. The level factor is reproduced most importantly by the preference shock to which it is strongly and positively related but technology and monetary shocks, with negative loadings, are also contributing to its replication. The slope factor is only related to the monetary policy shocks and it is poorly explained. We find that there are gains in in- and out-of-sample forecast of consumption and inflation if term structure information is used in a time varying hybrid prices of risk setting. In-sample yield forecast are better in models with non-stationary shocks for the period 1982-1988. After this period, time varying market price of risk models provide better in-sample forecasts. For the period 2005-2008, out of sample forecast of consumption and inflation are better if term structure information is incorporated in the DSGE model but yields are better forecasted by a pure macro DSGE model.
Resumo:
The "one-gene, one-protein" rule, coined by Beadle and Tatum, has been fundamental to molecular biology. The rule implies that the genetic complexity of an organism depends essentially on its gene number. The discovery, however, that alternative gene splicing and transcription are widespread phenomena dramatically altered our understanding of the genetic complexity of higher eukaryotic organisms; in these, a limited number of genes may potentially encode a much larger number of proteins. Here we investigate yet another phenomenon that may contribute to generate additional protein diversity. Indeed, by relying on both computational and experimental analysis, we estimate that at least 4%-5% of the tandem gene pairs in the human genome can be eventually transcribed into a single RNA sequence encoding a putative chimeric protein. While the functional significance of most of these chimeric transcripts remains to be determined, we provide strong evidence that this phenomenon does not correspond to mere technical artifacts and that it is a common mechanism with the potential of generating hundreds of additional proteins in the human genome.
Resumo:
[eng] We analyze the equilibrium of a multi-sector exogenous growth model where the introduction of minimum consumption requirements drives structural change. We show that equilibrium dynamics simultaneously exhibt structural change and balanced growth of aggregate variables as is observed in US when the initial intensity of minimum consumption requirements is sufficiently small. This intensity is measured by the ratio between the aggregate value of the minimum consumption requirements and GDP and, therefore, it is inversely related with the level of economic development. Initially rich economies benefit from an initially low intensity of the minimum consumption requirements and, as a consequence, these economies end up exhibiting balanced growth of aggregate variables, while there is structural change. In contrast, initially poor economies suffer from an initially large intensity of the minimum consumption requirements, which makes the growth of the aggregate variables unbalanced during a very large period. These economies may never exhibit simultaneously balanced growth of aggregate variables and structural change.
Resumo:
We presented an integrated hierarchical model of psychopathology that more accurately captures empirical patterns of comorbidity between clinical syndromes and personality disorders.In order to verify the structural validity of the model proposed, this study aimed to analyze the convergence between the Restructured Clinical (RC) scales and Personality scales (PSY-5) of the MMPI-2-RF and the Clinical Syndrome and Personality Disorder scales of the MCMI-III.The MMPI-2-RF and MCMI-III were administered to a clinical sample of 377 outpatients (167 men and 210 women).The structural hypothesiswas assessed by using a Confirmatory Factor Analytic design with four common superordinate factors. An independent-cluster-basis solution was proposed based on maximum likelihood estimation and the application of several fit indices.The fit of the proposed model can be considered as good and more so if we take into account its complexity.
Resumo:
Between the cities of Domodossola and Locarno, the complex ``Centovalli Line'' tectonic zone of the Central Alps outlines deformation phases over a long period of time (probably starting similar to 30 Ma ago) and under variable P-T conditions. The last deformation phases developed gouge-bearing faults with a general E-W trend that crosscuts the roots of the Alpine Canavese zone and the Finero ultramafic body. Kinematic indicators show that the general motion was mainly dextral associated with back thrusting towards the S. The <2 mu m clay fractions of fault gouges from Centovalli Line consist mainly of illite, smectite and chlorite with varied illite-smectite, chlorite-smectite and chlorite-serpentine mixed-layers. Constrained with the illite crystallinity index, the thermal conditions induced by the tectonic activity show a gradual trend from anchizonal to diagenetic conditions. The <2 and <0.2 mu M clay fractions, and hydrothermal K-feldspar separates all provide K-Ar ages between 14.2 +/- 2.9 Ma and roughly 0 Ma, with major episodes at about 12,8, 6 and close to 0 Ma These ages set the recurrent tectonic activity and the associated fluid circulations between Upper Miocene and Recent. On the basis of the K-Ar ages and with a thermal gradient of 25-30 degrees C/km, the studied fault zones were located at a depth of 4-7 km. If they were active until now as observed in field, the exhumation was approximately 2.5-3.0 km for the last 12 Ma with a mean velocity of 0.4 mm/y. Comparison with available models on the recent Alpine evolution shows that the tectonic activity in the area relates to a continuum of the back-thrusting movements of the Canavese Line, and/or to several late-extensional phases of the Rhone-Simplon line. The Centovalli-Val Vigezzo zone therefore represents a major tectonic zone of the Central-Western Alps resulting from different interacting tectonic events. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To 'map' the current (2004) state of prenatal screening in Europe. DESIGN: (i) Survey of country policies and (ii) analysis of data from EUROCAT (European Surveillance of Congenital Anomalies) population-based congenital anomaly registers. SETTING: Europe. POPULATION: Survey of prenatal screening policies in 18 countries and 1.13 million births in 12 countries in 2002-04. METHODS: (i) Questionnaire on national screening policies and termination of pregnancy for fetal anomaly (TOPFA) laws in 2004. (ii) Analysis of data on prenatal detection and termination for Down's syndrome and neural tube defects (NTDs) using the EUROCAT database. MAIN OUTCOME MEASURES: Existence of national prenatal screening policies, legal gestation limit for TOPFA, prenatal detection and termination rates for Down's syndrome and NTD. RESULTS: Ten of the 18 countries had a national country-wide policy for Down's syndrome screening and 14/18 for structural anomaly scanning. Sixty-eight percent of Down's syndrome cases (range 0-95%) were detected prenatally, of which 88% resulted in termination of pregnancy. Eighty-eight percent (range 25-94%) of cases of NTD were prenatally detected, of which 88% resulted in termination. Countries with a first-trimester screening policy had the highest proportion of prenatally diagnosed Down's syndrome cases. Countries with no official national Down's syndrome screening or structural anomaly scan policy had the lowest proportion of prenatally diagnosed Down's syndrome and NTD cases. Six of the 18 countries had a legal gestational age limit for TOPFA, and in two countries, termination of pregnancy was illegal at any gestation. CONCLUSIONS: There are large differences in screening policies between countries in Europe. These, as well as organisational and cultural factors, are associated with wide country variation in prenatal detection rates for Down's syndrome and NTD.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.