973 resultados para Stem Evoked-potentials
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
BACKGROUND: Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS: The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS: Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS: PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.
Resumo:
PURPOSE: The impacts of humeral offset and stem design after reverse shoulder arthroplasty (RSA) have not been well-studied, particularly with regard to newer stems which have a lower humeral inclination. The purpose of this study was to analyze the effect of different humeral stem designs on range of motion and humeral position following RSA. METHODS: Using a three-dimensional computer model of RSA, a traditional inlay Grammont stem was compared to a short curved onlay stem with different inclinations (155°, 145°, 135°) and offset (lateralised vs medialised). Humeral offset, the acromiohumeral distance (AHD), and range of motion were evaluated for each configuration. RESULTS: Altering stem design led to a nearly 7-mm change in humeral offset and 4 mm in the AHD. Different inclinations of the onlay stems had little influence on humeral offset and larger influence on decreasing the AHD. There was a 10° decrease in abduction and a 5° increase in adduction between an inlay Grammont design and an onlay design with the same inclination. Compared to the 155° model, the 135° model improved adduction by 28°, extension by 24° and external rotation of the elbow at the side by 15°, but led to a decrease in abduction of 9°. When the tray was placed medially, on the 145° model, a 9° loss of abduction was observed. CONCLUSIONS: With varus inclination prostheses (135° and 145°), elevation remains unchanged, abduction slightly decreases, but a dramatic improvement in adduction, extension and external rotation with the elbow at the side are observed.
Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials.
Resumo:
This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants" math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a nonnumerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.
Resumo:
The availability of stem cells is of great promise to study early developmental stages and to generate adequate cells for cell transfer therapies. Although many researchers using stem cells were successful in dissecting intrinsic and extrinsic mechanisms and in generating specific cell phenotypes, few of the stem cells or the differentiated cells show the capacity to repair a tissue. Advances in cell and stem cell cultivation during the last years made tremendous progress in the generation of bona fide differentiated cells able to integrate into a tissue after transplantation, opening new perspectives for developmental biology studies and for regenerative medicine. In this review, we focus on the main works attempting to create in vitro conditions mimicking the natural environment of CNS structures such as the neural tube and its development in different brain region areas including the optic cup. The use of protocols growing cells in 3D organoids is a key strategy to produce cells resembling endogenous ones. An emphasis on the generation of retina tissue and photoreceptor cells is provided to highlight the promising developments in this field. Other examples are presented and discussed, such as the formation of cortical tissue, the epithelial gut or the kidney organoids. The generation of differentiated tissues and well-defined cell phenotypes from embryonic stem (ES) cells or induced pluripotent cells (iPSCs) opens several new strategies in the field of biology and regenerative medicine. A 3D organ/tissue development in vitro derived from human cells brings a unique tool to study human cell biology and pathophysiology of an organ or a specific cell population. The perspective of tissue repair is discussed as well as the necessity of cell banking to accelerate the progress of this promising field.
Resumo:
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.
Resumo:
Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.
Resumo:
Co-culture techniques associating both dermal fibroblasts and epidermal keratinocytes have shown to have better clinical outcome than keratinocyte culture alone for the treatment of severe burns. Since fat grafting has been shown to improve scar remodelling, new techniques such as cell-therapy-assisted surgical reconstruction with isolated and expanded autologous adipose-derived stem cells (ASCs) would be of benefit to increase graft acceptation. Therefore, integrating ASCs into standardized procedures for cultured skin grafting could be of benefit for the patient if cell quality and quantity could be maintained. The purpose of this study was to evaluate ASC processing from adult tissue with simple isolation (without enzymatic steps), expansion (low density of 325-3,000 cells/cm2) and storage conditions to assure methods to enhance the cellular resistance when transferred back to the patient. Co-culture with cell-banked skin progenitor cells (FE002-SK2) showed an increase of 40-50% ASCs yield at high passages alongside with a better preservation of morphology, proper adipogenic and osteogenic differentiation and efficient biocompatibility with 3D collagen scaffolds. ASCs can be considered as a valuable additional cell source to be delivered in biological bandages to the patient in a need of tissue reconstruction such as burn patients.
Resumo:
Glioblastoma multiforme (GBM) is the most frequent and lethal primary brain tumor in adults. Accumulating evidence suggests that tumors comprise a hierarchical organization that is, at least partially, not genetically driven. Cells that reside at the apex of this hierarchy are commonly referred to as cancer stem cells (CSCs) and are believed to largely contribute to recurrence and therapeutic failure. Although the complexity of epigenetic regulation of the genome precludes prediction as to which epigenetic changes dominate CSC specification in different cancer types, the ability of microRNAs (miRNAs) to fine-tune expression of entire gene networks places them among prime candidates for establishing CSC properties. In this study we characterized the miRNA expression profile of primary GBM grown either under conditions that enrich for GSCs or their differentiated non-tumorigenic progeny (DGCs). Although, we identified a subset of miRNAs that was strongly differentially expressed between GSCs and DGCs, we observed that in GSCs both let-7 and, paradoxically, their target genes are highly expressed, suggesting protection against let-7 action. Using PAR-CLIP we show that insulin-like growth factor-2 mRNA-binding protein 2 (IMP2) provides a mechanism for let-7 target gene protection that represents an alternative to LIN28A/B, which abrogates let-7 biogenesis in normal embryonic and certain malignant stem cells. By direct binding to miRNA recognition elements, IMP2 protects its targets from let-7 mediated decay. Importantly, depletion of IMP2 in GSCs strongly impairs their self- renewal properties and tumorigenicity in vivo, a phenotype that can be rescued by expression of LIN28B, suggesting that IMP2 mainly contributes to GSC maintenance by protecting let-7 target genes from silencing. Using mouse models, we show that depletion of IMP2 in neural stem cells (NSCs) induces let-7 target gene down-regulation, impairs their clonogenic capacity, and affects differentiation. Taken together, our observations describe a novel regulatory function of IMP2 in the let-7 axis whereby it supports GSC and NSC specification. Résumé (Français) Le glioblastome (GBM) est la tumeur primaire maligne du cerveau la plus fréquente. De nombreuses études ont démontré l'existence d'une organisation hiérarchique des cellules cancéreuses liée à des mécanismes épigénétiques. Les cellules qui se trouvent au sommet de cette hiérarchie sont appelées cellules souches cancéreuses (CSC), et contribuent à l'échec thérapeutique. Bien que la complexité des régulateurs épigénétiques permette difficilement de prédire quel mécanisme contribue le plus aux propriétés des CSC, la capacité des microRNAs (miRNAs) de réguler des réseaux entiers de gènes, les placent comme des candidats de premiers choix. Ici, nous avons caractérisé le profil d'expression des miRNAs dans des tumeurs primaires de GBM cultivées dans des conditions qui enrichissent soit pour les CSC, soit pour leur contrepartie de cellules cancéreuses différences (CCD). De manière surprenante et paradoxale la famille de miRNA let-7 et leurs gènes cibles étaient hautement exprimés dans les CSC, suggérant un mécanisme de protection contre l'action des let-7. Avec l'aide de la technologie PAR-CLIP, nous démontrons que la protéine IMP2, protège les mRNAs de l'action des let-7 et représente une alternative à Lin28A/B, qui d'ordinaire réprime fortement la maturation des let-7 dans les cellules souches embryonnaires et divers cancers. En se liant à la région ciblée par les let-7, IMP2 protège ses transcrits de l'action de cette classe de microRNA qui est tumoro-supressive. La déplétion d'IMP2 dans des CSC de GBM réduit fortement leur clonogénicité in vitro et leur tumorigénicité in vivo. Ceci peut être reversé en introduisant Lin28B dans des CSC de GBM, suggérant qu'IMP2 exerce ses fonctions pro-tumorigéniques en modulant l'axe let-7. Avec l'aide de modèles murins, nous observons que la déplétion de IMP2 dans les cellules souches neurales (CSN) induit une baisse de leur clonogénicité et des cibles des miRNAs let-7, suggérant une conservation de ce mécanisme entre les CSC de GBM et les CSN. En résumé, nos observations définissent une nouvelle fonction de IMP2 dans l'axe let-7 par lequel il contribue au maintien des propriétés des CSC et des CSN.
Resumo:
The importance of logistics for companies is a well known and justified issue. Today, enterprises are developing their logistics processes in order to match their products and services to the requirements of the most important customers. Therefore there is a need for developing analysing tools for logistics and especially for analysing the significance of various customer service elements. The aim of this paper is to propose analytic tools for supporting strategic level logistics decision making by emphasizing service level elements on two levels: (1) to introduce and propose approaches to categorize the developing efforts of logistics and (2) to introduce and/or propose approaches for solving some customer service related strategic level logistics problems. This study consists of two parts. In the first part an overview of the work is presented, and the second part comprises eight research papers on the topic of the study. The overview includes an introduction, where strategic and tactical level logistics problems are discussed and the relation of logistics to marketing and customer service issues is presented. In the first part of the study the objectives, the structure, the research strategy and the contribution of the research are described, and the challenges for future research are discussed. In the second part the three first papers deal with the identification of objectives for logistics while the remaining five papaers concentrate on solving customer service related strategic level logistics problems.
Resumo:
Five novel santalane-type sesquiterpenes were isolated from the stem bark of Duguetia glabriuscula - Annonaceae. Their structures have been established on the basis of spectral data and chemical evidences (¹H and 13C NMR, HMQC, HMBC) as (+)-alpha-santal-10-en-9-ol (1), (+)-alpha-santalan-10,11-epoxy-9-ol (2), alpha-santal-11-en-9,10-diol (3), (+)-alpha-santalan-9,10,11-triol (4), and (+)-alpha-santalan-9,11-epoxy-10-ol (5). Polycarpol, a triterpenoid, was also obtained.
Resumo:
Phytochemical investigation of the hexane extract from the stem of Xylopia laevigata led to the isolation of the ent-kaurane diterpenoids, ent-kaur-16-en-19-oic acid, 4-epi-kaurenic acid, ent-16β-hydroxy-17-acetoxy-kauran-19-al, ent-3β-hydroxy-kaur-16-en-19-oic acid, and ent-16β,17-dihydroxy-kauran-19-oic acid, as well as spathulenol and a mixture of β-sitosterol, stigmasterol and campesterol. The identification of the compounds was performed on the basis of spectrometric methods including GC-MS, IR, and 1D and 2D NMR. Potent larvicidal activity against Aedes aegypti larvae with LC50 of 62.7 µg mL-1 was found for ent-3β-hydroxy-kaur-16-en-19-oic acid. This compound also showed significant antifungal activity against Candida glabrata and Candida dubliniensis with MIC values of 62.5 µg mL-1.
Resumo:
Essential oils of Lippia sidoides, Lippia gracilis and their main chemical components were investigated for in vitro control of Thielaviopsis paradoxa. Mycelial growth and a number of pathogen conidia were inhibited by the essential oil of L. sidoides at all concentrations tested (0.2; 0.5; 1.0; 3.0 µL mL-1). L. sidoides oil contained 42.33% thymol and 4.56% carvacrol, while L. gracilis oil contained 10% thymol and 41.7% carvacrol. Mycelial growth and conidial production of T. paradoxa were completely inhibited by thymol at a 0.3 µL m-1 concentration. The results suggest that thymol could potentially be used for controlling coconut stem bleeding.