967 resultados para Steam-engines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

摘要:管线输送是稠油输运的一种主要手段。由于我国一些油田原油粘度高,常温下流动性差,管输需采用特殊工艺。根据粘度随温度沿指数下降的规律,与其它工艺比较,加热输送工艺有更大的潜力。该文提出了一种蒸汽引射直接加热稠油输送的新技术。为研究其有效性,进行了性能分析,并在辽河油田φ80mm,300m输油管线上进行了现场实验,测量了三种工况下该方法对稠油的温度、压降和含水串的影响。实验结果表明该文提出的方法是可行的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

活塞的热疲劳性能对柴油发动机的全寿命至关重要。由于能量有限和可控性差等缺点,现有实验系统均不能满意地进行活塞热负荷模拟实验。为此,提出并建立了一套激光诱发活塞热负荷的实验系统。该系统通过对激光束的空间整形,使之投射到活塞表面后诱发的温度场分布满足特定要求。基于PROFIBUS-DP现场总线技术实现了系统集成和实验过程的全反馈控制。针对活塞的典型热负荷条件,即高周热疲劳和热冲击分别进行实验,以模拟正常工作循环和“启动一停车”等热负荷或转速突变工况。通过设置加热一冷却周期或上限下限温度,可以获得相应的热负荷模拟实验效果。研究结果表明,采用经光束整形的激光进行活塞热负荷模拟实验具有周期短、可控性好等优点。 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a computational study of viscous effects on lobed mixer flowfields. The computations, which were carried out using a compressible, three-dimensional, unstructured-mesh Navier-Stokes solver, were aimed at assessing the impacts on mixer performance of inlet boundary-layer thickness and boundary-layer separation within the lobe. The geometries analyzed represent a class of lobed mixer configurations used in turbofan engines. Parameters investigated included lobe penetration angles from 22 to 45 deg, stream-to-stream velocity ratios from 0.5 to 1.0, and two inlet boundary-layer displacement thicknesses. The results show quantitatively the increasing influence of viscous effects as lobe penetration angle is increased. It is shown that the simple estimate of shed circulation given by Skebe et al. (Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Field, AIAA Paper 88-3785, July, 1988) can be extended even to situations in which the flow is separated, provided an effective mixer exit angle and height are defined. An examination of different loss sources is also carried out to illustrate the relative contributions of mixing loss and of boundary-layer viscous effects in cases of practical interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition. Therefore, besides throttle opening control and VVT shifting, cyclic and individual cylinder fuel injection control is necessary to achieve a smooth transition. The control method was developed and implemented in a test engine, and the result was a considerably reduced NIMEP fluctuation during the mode switch. The instantaneous AFR and RGF measurements could furthermore be adopted to develop more sophisticated control methods for SI-HCCI-SI transitions. © 2010 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemical looping process using the redox reactions of iron oxide has been used to produce separate streams of pure H2 and CO2 from a solid fuel. An iron oxide carrier prepared using a mechanical mixing technique and comprised of 100wt.% Fe2O3 was used. It was demonstrated that hydrogen can be produced from three representative coals - a Russian bituminous, a German lignite and a UK sub-bituminous coal. Depending on the fuel, pure H2 with [CO] ≲50vol.ppm can be obtained from the proposed process. The cyclic stability of the iron oxide carrier was not adversely affected by contaminants found in syngas which are gaseous above 273K. Stable quantities of H2 were produced over five cycles for all three coals investigated. Independent of the fuel, SO2 was not formed during the oxidation with steam, i.e. the produced H2 was not contaminated with SO2. Since oxidation with air removes contaminants and generates useful heat and pure N2 for purging, it should be included in the operating cycle. Overall, it was demonstrated that the proposed process may be an attractive approach to upgrade crude syngas produced by the gasification of low-rank coals to pure H2, representing a substantial increase in calorific value, whilst simultaneous capturing CO2, a greenhouse gas. © 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍一种自行研制的蒸汽引射器,蒸汽以自由射流形式注入到输油管中,利用蒸汽释放的热量提高稠油温度以降低黏度,从而达到低输送压降的目的。该引器具有加热效率高,防止稠油堵塞管线等优点,引射器已在辽河油田输油管线上进行了现场实验,取得了很好的效果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal fatigue behavior is one of the foremost considerations in the design and operation of diesel engines. It is found that thermal fatigue is closely related to the temperature field and temperature fluctuation in the structure. In this paper, spatially shaped high power laser was introduced to simulate thermal loadings on the piston. The incident Gaussian beam was transformed into concentric multi-circular beam of specific intensity distribution with the help of diffractive optical element (DOE), and the transient temperature fields in the piston similar to those under working conditions could be achieved by setting up appropriate loading cycles. Simulation tests for typical thermal loading conditions, i.e., thermal high cycle fatigue (HCF) and thermal shock (or thermal low cycle fatigue, LCF) were carried out. Several important parameters that affect the transient temperature fields and/or temperature oscillations, including controlling mode, intensity distribution of shaped laser, laser power, temporal profile of laser pulse, heating time and cooling time in one thermal cycle, etc., were investigated and discussed. The results show that as a novel method, the shaped high power laser can simulate thermal loadings on pistons efficiently, and it is helpful in the study of thermal fatigue behavior in pistons. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.