993 resultados para Statistical Error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional least-square method (LS). Among these the most important are: there are no restrictions on linearity or in the form which the parameters appears in the mathematical model describing the system, and it is not required that these parameters be time invariant. The EKF uses the statistical properties of the process and the observation noise, to produce estimates based on the mean square error of the estimates themselves. Differently, the LS minimizes a cost function based on the plant output behavior. Results for the estimation of some longitudinal aerodynamic derivatives from simulated data are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article deals with a contour error controller (CEC) applied in a high speed biaxial table. It works simultaneously with the table axes controllers, helping them. In the early stages of the investigation, it was observed that its main problem is imprecision when tracking non-linear contours at high speeds. The objectives of this work are to show that this problem is caused by the lack of exactness of the contour error mathematical model and to propose modifications in it. An additional term is included, resulting in a more accurate value of the contour error, enabling the use of this type of motion controller at higher feedrate. The response results from simulated and experimental tests are compared with those of common PID and non-corrected CEC in order to analyse the effectiveness of this controller over the system. The main conclusions are that the proposed contour error mathematical model is simple, accurate, almost insensible to the feedrate and that a 20:1 reduction of the integral absolute contour error is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of limiting dilution assay (LDA) for assessing the frequency of responders in a cell population is a method extensively used by immunologists. A series of studies addressing the statistical method of choice in an LDA have been published. However, none of these studies has addressed the point of how many wells should be employed in a given assay. The objective of this study was to demonstrate how a researcher can predict the number of wells that should be employed in order to obtain results with a given accuracy, and, therefore, to help in choosing a better experimental design to fulfill one's expectations. We present the rationale underlying the expected relative error computation based on simple binomial distributions. A series of simulated in machina experiments were performed to test the validity of the a priori computation of expected errors, thus confirming the predictions. The step-by-step procedure of the relative error estimation is given. We also discuss the constraints under which an LDA must be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, the effectiveness of Naive Bayes and Gaussian Mixture Models classifiers on segmenting exudates in retinal images is studied and the results are evaluated with metrics commonly used in medical imaging. Also, a color variation analysis of retinal images is carried out to find how effectively can retinal images be segmented using only the color information of the pixels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research concerns different statistical methods that assist to increase the demand forecasting accuracy of company X’s forecasting model. Current forecasting process was analyzed in details. As a result, graphical scheme of logical algorithm was developed. Based on the analysis of the algorithm and forecasting errors, all the potential directions for model future improvements in context of its accuracy were gathered into the complete list. Three improvement directions were chosen for further practical research, on their basis, three test models were created and verified. Novelty of this work lies in the methodological approach of the original analysis of the model, which identified its critical points, as well as the uniqueness of the developed test models. Results of the study formed the basis of the grant of the Government of St. Petersburg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting fact about language cognition is that stimulation involving incongruence in the merge operation between verb and complement has often been related to a negative event-related potential (ERP) of augmented amplitude and latency of ca. 400 ms - the N400. Using an automatic ERP latency and amplitude estimator to facilitate the recognition of waves with a low signal-to-noise ratio, the objective of the present study was to study the N400 statistically in 24 volunteers. Stimulation consisted of 80 experimental sentences (40 congruous and 40 incongruous), generated in Brazilian Portuguese, involving two distinct local verb-argument combinations (nominal object and pronominal object series). For each volunteer, the EEG was simultaneously acquired at 20 derivations, topographically localized according to the 10-20 International System. A computerized routine for automatic N400-peak marking (based on the ascendant zero-cross of the first waveform derivative) was applied to the estimated individual ERP waveform for congruous and incongruous sentences in both series for all ERP topographic derivations. Peak-to-peak N400 amplitude was significantly augmented (P < 0.05; one-sided Wilcoxon signed-rank test) due to incongruence in derivations F3, T3, C3, Cz, T5, P3, Pz, and P4 for nominal object series and in P3, Pz and P4 for pronominal object series. The results also indicated high inter-individual variability in ERP waveforms, suggesting that the usual procedure of grand averaging might not be considered a generally adequate approach. Hence, signal processing statistical techniques should be applied in neurolinguistic ERP studies allowing waveform analysis with low signal-to-noise ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50% of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of some process variables on the productivity of the fractions (liquid yield times fraction percent) obtained from SCFE of a Brazilian mineral coal using isopropanol and ethanol as primary solvents is analyzed using statistical techniques. A full factorial 23 experimental design was adopted to investigate the effects of process variables (temperature, pressure and cosolvent concentration) on the extraction products. The extracts were analyzed by the Preparative Liquid Chromatography-8 fractions method (PLC-8), a reliable, non destructive solvent fractionation method, especially developed for coal-derived liquids. Empirical statistical modeling was carried out in order to reproduce the experimental data. Correlations obtained were always greater than 0.98. Four specific process criteria were used to allow process optimization. Results obtained show that it is not possible to maximize both extract productivity and purity (through the minimization of heavy fraction content) simultaneously by manipulating the mentioned process variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to make tofu from soybean cultivar BRS 267 under different processing conditions in order to evaluate the influence of each treatment on the product quality. A fractional factorial 2(5-1) design was used, in which independent variables (thermal treatment, coagulant concentration, coagulation time, curd cutting, and draining time) were tested at two different levels. The response variables studied were hardness, yield, total solids, and protein content of tofu. Polynomial models were generated for each response. To obtain tofu with desirable characteristics (hardness ~4 N, yield 306 g tofu.100 g-1 soybeans, 12 g proteins.100 g-1 tofu and 22 g solids.100 g-1 tofu), the following processing conditions were selected: heating until boiling plus 10 minutes in water bath, 2% dihydrated CaSO4 w/w, 10 minutes coagulation, curd cutting, and 30 minutes draining time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contents of total phenolic compounds (TPC), total flavonoids (TF), and ascorbic acid (AA) of 18 frozen fruit pulps and their scavenging capacities against peroxyl radical (ROO•), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) were determined. Principal Component Analysis (PCA) showed that TPC (total phenolic compounds) and AA (ascorbic acid) presented positive correlation with the scavenging capacity against ROO•, and TF (total flavonoids) showed positive correlation with the scavenging capacity against •OH and ROO• However, the scavenging capacity against H2O2 presented low correlation with TF (total flavonoids), TPC (total phenolic compounds), and AA (ascorbic acid). The Hierarchical Cluster Analysis (HCA) allowed the classification of the fruit pulps into three groups: one group was formed by the açai pulp with high TF, total flavonoids, content (134.02 mg CE/100 g pulp) and the highest scavenging capacity against ROO•, •OH and H2O2; the second group was formed by the acerola pulp with high TPC, total phenolic compounds, (658.40 mg GAE/100 g pulp) and AA , ascorbic acid, (506.27 mg/100 g pulp) contents; and the third group was formed by pineapple, cacao, caja, cashew-apple, coconut, cupuaçu, guava, orange, lemon, mango, passion fruit, watermelon, pitanga, tamarind, tangerine, and umbu pulps, which could not be separated considering only the contents of bioactive compounds and the scavenging properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potato pulp waste (PPW) drying was investigated under different experimental conditions (temperatures from 50 to 70 °C and air flow from 0.06 to 0.092 m³ m- 2 s- 1) as a possible way to recover the waste generated by potato chip industries and to select the best-fit model to the experimental results of PPW drying. As a criterion to evaluate the fitting of mathematical models, a method based on the sum of the scores assigned to the four evaluated statistical parameters was used: regression coefficient (R²), relative mean error P (%), root mean square error (RMSE), and reduced chi-square (χ²). The results revealed that temperature and air velocity are important parameters to reduce PPW drying time. The models Midilli and Diffusion had the lowest sum values, i.e., with the best fit to the drying data, satisfactorily representing the drying kinetics of PPW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strongest wish of the customer concerning chemical pulp features is consistent, uniform quality. Variation may be controlled and reduced by using statistical methods. However, studies addressing the application and benefits of statistical methods in forest product sector are scarce. Thus, the customer wish is the root cause of the motivation behind this dissertation. The research problem addressed by this dissertation is that companies in the chemical forest product sector require new knowledge for improving their utilization of statistical methods. To gain this new knowledge, the research problem is studied from five complementary viewpoints – challenges and success factors, organizational learning, problem solving, economic benefit, and statistical methods as management tools. The five research questions generated on the basis of these viewpoints are answered in four research papers, which are case studies based on empirical data collection. This research as a whole complements the literature dealing with the use of statistical methods in the forest products industry. Practical examples of the application of statistical process control, case-based reasoning, the cross-industry standard process for data mining, and performance measurement methods in the context of chemical forest products manufacturing are brought to the public knowledge of the scientific community. The benefit of the application of these methods is estimated or demonstrated. The purpose of this dissertation is to find pragmatic ideas for companies in the chemical forest product sector in order for them to improve their utilization of statistical methods. The main practical implications of this doctoral dissertation can be summarized in four points: 1. It is beneficial to reduce variation in chemical forest product manufacturing processes 2. Statistical tools can be used to reduce this variation 3. Problem-solving in chemical forest product manufacturing processes can be intensified through the use of statistical methods 4. There are certain success factors and challenges that need to be addressed when implementing statistical methods