902 resultados para Static Posture
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders’ performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.
Resumo:
A graph theoretic approach is developed for accurately computing haulage costs in earthwork projects. This is vital as haulage is a predominant factor in the real cost of earthworks. A variety of metrics can be used in our approach, but a fuel consumption proxy is recommended. This approach is novel as it considers the constantly changing terrain that results from cutting and filling activities and replaces inaccurate “static” calculations that have been used previously. The approach is also capable of efficiently correcting the violation of top down cutting and bottom up filling conditions that can be found in existing earthwork assignments and sequences. This approach assumes that the project site is partitioned into uniform blocks. A directed graph is then utilised to describe the terrain surface. This digraph is altered after each cut and fill, in order to reflect the true state of the terrain. A shortest path algorithm is successively applied to calculate the cost of each haul and these costs are summed to provide a total cost of haulage
Resumo:
Electric vehicle battery packs require DC circuit breakers for safety. These must break thousands of Amps DC at hundreds of Volts. The Sunshark solar racing car has a 140V 17Ahr battery box which needs such a breaker. A static design using 200V MOSFETs to interrupt the fault current is presented. The design specification, decisions and proposed solution circuit are given. The current sensing technique,MOSFET overvoltage protection, and DC bus capacitor precharging scheme are specific focuses. Simulation results are presented and discussed.
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on these two activities. For example, while the distribution of blood alcohol content (BAC) levels among fatally injured male drivers compared to riders is similar, a greater proportion of motorcycle fatalities involve levels in the lower (0 to .10% BAC) range. Several psychomotor and higher-order cognitive skills underpinning riding performance appear to be significantly influenced by low levels of alcohol. For example, at low levels (.02 to .046% BAC), riders show significant increases in reaction time to hazardous stimuli, inattention to the riding task, performance errors such as leaving the roadway and a reduced ability to complete a timed course. It has been suggested that alcohol may redirect riders’ focus from higher-order cognitive skills to more physical skills such as maintaining balance. As part of a research program to investigate the potential benefits of introducing a zero, or reduced, BAC for all riders in Queensland regardless of their licence status, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of ten experienced riders was measured while they performed either no secondary task, a visual search task, or a cognitive (arithmetic) task following the administration of alcohol (0; 0.02, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner; however, objective measures of static balance were negatively affected only at the .05% BAC dose. Performance on a concurrent secondary visual search task, but not a purely cognitive (arithmetic) task, improved postural stability across all BAC levels. Finally, the .05% BAC dose was associated with impaired performance on the cognitive (arithmetic) task, but not the visual search task, when participants were balancing, but neither task was impaired by alcohol when participants were standing on the floor. Implications for road safety and future ‘drink riding’ policy considerations are discussed.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and Exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an $R^2$ goodness of fit of 0.9994 and 0.9982 respectively over a 10 hour test period. The utility of the framework is demonstrated on a number of usage scenarios including real time monitoring and `what-if' analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
Background & aims Depression has a complex association with cardiometabolic risk, both directly as an independent factor and indirectly through mediating effects on other risk factors such as BMI, diet, physical activity, and smoking. Since changes to many cardiometabolic risk factors involve behaviour change, the rise in depression prevalence as a major global health issue may present further challenges to long-term behaviour change to reduce such risk. This study investigated associations between depression scores and participation in a community-based weight management intervention trial. Methods A group of 64 overweight (BMI > 27), otherwise healthy adults, were recruited and randomised to follow either their usual diet, or an isocaloric diet in which saturated fat was replaced with monounsaturated fat (MUFA), to a target of 50% total fat, by adding macadamia nuts to the diet. Subjects were assessed for depressive symptoms at baseline and at ten weeks using the Beck Depression Inventory (BDI-II). Both control and intervention groups received advice on National Guidelines for Physical Activity and adhered to the same protocol for food diary completion and trial consultations. Anthropometric and clinical measurements (cholesterol, inflammatory mediators) also were taken at baseline and 10 weeks. Results During the recruitment phase, pre-existing diagnosed major depression was one of a range of reasons for initial exclusion of volunteers from the trial. Amongst enrolled participants, there was a significant correlation (R = −0.38, p < 0.05) between BDI-II scores at baseline and duration of participation in the trial. Subjects with a baseline BDI ≥10 (moderate to severe depression symptoms) were more likely to dropout of the trial before week 10 (p < 0.001). BDI-II scores in the intervention (MUFA) diet group decreased, but increased in the control group over the 10-week period. Univariate analysis of variance confirmed these observations (adjusted R2 = 0.257, p = 0.01). Body weight remained static over the 10-week period in the intervention group, corresponding to a relative increase in the control group (adjusted R2 = 0.097, p = 0.064). Conclusions Depression symptoms have the potential to affect enrolment in and adherence to dietbased risk reduction interventions, and may consequently influence the generalisability of such trials. Depression scores may therefore be useful for characterising, screening and allocating subjects to appropriate treatment pathways.
Resumo:
This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.
Resumo:
Wide-Area Measurement Systems (WAMS) provide the opportunity of utilizing remote signals from different locations for the enhancement of power system stability. This paper focuses on the implementation of remote measurements as supplementary signals for off-center Static Var Compensators (SVCs) to damp inter-area oscillations. Combination of participation factor and residue method is used for the selection of most effective stabilizing signal. Speed difference of two generators from separate areas is identified as the best stabilizing signal and used as a supplementary signal for lead-lag controller of SVCs. Time delays of remote measurements and control signals is considered. Wide-Area Damping Controller (WADC) is deployed in Matlab Simulink framework and is tested under different operating conditions. Simulation results reveal that the proposed WADC improve the dynamic characteristic of the system significantly.
Resumo:
As a renewable energy source, wind power is playing an increasingly important role in China’s electricity supply. Meanwhile, China is also the world’s largest market for Clean Development Mechanism (CDM) wind power projects. Based on the data of 27 wind power projects of Inner Mongolia registered with the Executive Board of the United Nations (EB) in 2010, this paper constructs a financial model of Net Present Value (NPV) to analyze the cost of wind power electricity. A sensitivity analysis is then conducted to examine the impact of different variables with and without Certified Emission Reduction (CER) income brought about by the CDM. It is concluded that the CDM, along with static investment and annual wind electricity production, is one of the most significant factors in promoting the development of wind power in China. Additionally, wind power is envisaged as a practical proposition for competing with thermal power if the appropriate actions identified in the paper are made.
Resumo:
Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .
Resumo:
When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
To describe barefoot, shod and in-shoe kinematics during stance phase of walking gait in a normal arched adult population. An equal sample of males and females (n = 24) was recruited. In order to quantify the effect of footwear independent of technical design features, an ASICS shoe (Onitsuka Tiger-Mexico 66, Japan) was used in this study. Markers were applied to three conditions; barefoot, shod, and in-shoe. The calibration markers were used to define static pose. The order of testing was randomised. Participants completed five trials in each condition. Kinematic data were captured using a 12 camera VICON MX40 motion capture system at 100 Hz and processed in Visual3D. A previously developed model was used to describe joint angles [1]. A univariate two-way ANOVA was used to identify any differences between the pairs of conditions. Post-hoc Sheffé tests were used to further interrogate the data for differences. At peak hallux dorsiflexion (Figure 1), during propulsion, the metatarsophalangeal joint (MPTJ) was significantly more dorsiflexed in the barefoot condition compared to the shod condition (p = 0.004). At the same gait event, the tibiocalcaneal joint (TCJ) was significantly more plantarflexed than both the shod and in-shoe conditions (p < 0.001), and the tarsometatarsal joint (TMTJ) was significantly less dorsiflexed in the barefoot condition compared to the shod and in-shoe conditions (p < 0.001). The findings of the current study demonstrate that footwear has significant effects on sagittal plane MPTJ joint dorsiflexion at peak hallux dorsiflexion, which results in compensations at proximal foot joints.