896 resultados para State-feedback control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The author presents adaptive control techniques for controlling the flow of real-time jobs from the peripheral processors (PPs) to the central processor (CP) of a distributed system with a star topology. He considers two classes of flow control mechanisms: (1) proportional control, where a certain proportion of the load offered to each PP is sent to the CP, and (2) threshold control, where there is a maximum rate at which each PP can send jobs to the CP. The problem is to obtain good algorithms for dynamically adjusting the control level at each PP in order to prevent overload of the CP, when the load offered by the PPs is unknown and varying. The author formulates the problem approximately as a standard system control problem in which the system has unknown parameters that are subject to change. Using well-known techniques (e.g., naive-feedback-controller and stochastic approximation techniques), he derives adaptive controls for the system control problem. He demonstrates the efficacy of these controls in the original problem by using the control algorithms in simulations of a queuing model of the CP and the load controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PMSM drive with high dynamic response is the attractive solution for servo applications like robotics, machine tools, electric vehicles. Vector control is widely accepted control strategy for PMSM control, which enables decoupled control of torque and flux, this improving the transient response of torque and speed. As the vector control demands exhaustive real time computations, so the present work is implemented using TI DSP 320C240. Presently position and speed controller have been successfully tested. The feedback information used is shaft (rotor) position from the incremental encoder and two motor currents. We conclude with the hope to extend the present experimental set up for further research related to PMSM applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte-Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga-Bhadra river system in southern India, with a steady state BOD-DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5, unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic free operation is obtained. The results are verified experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The barrier height of MIS tunnel diodes is studied considering the effect of deep impurities. It is shown that the barrier height of a given MIS-system can be controlled by changing the density and the activation energy of the defect level. The study leads to the conclusion that deep impurities of character opposite to shallow impurities enhance the barrier height. On the other hand, the barrier height is lowered when the type of the deep impurities is the same as that of shallow impurities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many process-control systems are air-operated. In such an environment, it would be desirable and economical to use pneumatic sensors. Bubble-back pressure sensors perform quite satisfactorily, but in case of viscous inflammable and slurry-like liquids with a tendency to froth, this level sensor is inadequate. The method suggested in this paper utilizes a pneumatic capacitor, one boundary of which is formed by the liquid level, to modulate a fluid amplifier feedback oscillator. The absence of moving parts and economy obtained makes this method attractive for process-control applications. The system has been mathematically modeled and simulated on an IBM 360/44 digital computer. Experimental values compare fairly well with the theoretical results. For the range tested, the sensor is found to have a linear frequency variation with the liquid level Extended running in the laboratory shows that the system is very reliable. This system has been found insensitive to temperature variations of up to 15ðC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of non-destructive determination of the state-of-charge of zinc- and magnesium-manganese dioxide dry batteries is examined experimentally from the viewpoint of internal impedance and open-circuit voltage at equilibrium. It is shown that the impedance is mainly charge-transfer controlled at relatively high states-of-charge and progressively changes over to diffusion control as the state-of-charge decreases in the case of zinc-manganese dioxide dry batteries. On the other hand, the impedance is mainly diffusion controlled for undischarged batteries but becomes charge-transfer controlled as soon as there is some discharge in the case of magnesium-manganese dioxide batteries. It is concluded that the determination of state-of-charge is not possible for both types of batteries by the measurement of impedance parameters due to film-induced fluctuations of these parameters. The measurement of open-circuit voltage at equilibrium can be used as a state-of-charge indicator for Zn-MnO2 batteries but not for Mg-MnO2 batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milito and Cruz have introduced a novel adaptive control scheme for finite Markov chains when a finite parametrized family of possible transition matrices is available. The scheme involves the minimization of a composite functional of the observed history of the process incorporating both control and estimation aspects. We prove the a.s. optimality of a similar scheme when the state space is countable and the parameter space a compact subset ofR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity