907 resultados para Star countable


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010-2014), covering similar to 10(9) point sources across an area of 520 deg(2), including 33 known globular clusters and similar to 350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9-2.5 mu m) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental properties of astrophysical magnetic fields is their ability to change topology through reconnection and in doing so, to release magnetic energy, sometimes violently. In this work, we review recent results on the role of magnetic reconnection and associated heating and particle acceleration in jet/accretion disk systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Large Magellanic Cloud (LMC) has a rich star cluster system spanning a wide range of ages and masses. One striking feature of the LMC cluster system is the existence of an age gap between 3 and 10 Gyr. But this feature is not clearly seen among field stars. Three LMC fields containing relatively poor and sparse clusters whose integrated colours are consistent with those of intermediate-age simple stellar populations have been imaged in BVI with the Optical Imager (SOI) at the Southern Telescope for Astrophysical Research (SOAR). A total of six clusters, five of them with estimated initial masses M < 104 M(circle dot), were studied in these fields. Photometry was performed and colour-magnitude diagrams (CMDs) were built using standard point spread function fitting methods. The faintest stars measured reach V similar to 23. The CMD was cleaned from field contamination by making use of the three-dimensional colour and magnitude space available in order to select stars in excess relative to the field. A statistical CMD comparison method was developed for this purpose. The subtraction method has proven to be successful, yielding cleaned CMDs consistent with a simple stellar population. The intermediate-age candidates were found to be the oldest in our sample, with ages between 1 and 2 Gyr. The remaining clusters found in the SOAR/SOI have ages ranging from 100 to 200 Myr. Our analysis has conclusively shown that none of the relatively low-mass clusters studied by us belongs to the LMC age gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission-line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, such as [O iii]/H beta versus [N ii]/H alpha (the BPT diagram), require the measurement of at least four emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between star-forming (SF) galaxies and active galactic nuclei (AGN) hosts and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically, (1) we use the Sloan Digital Sky Survey Data Release 7 to constitute a suitable sample of 280 000 ELGs, one-third of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al., Kauffmann et al. and Stasinska et al. to distinguish SF galaxies and AGN hosts and Kewley et al. to distinguish Seyferts from LINERs. (3) We transpose these classification schemes to alternative diagrams keeping [N ii]/H alpha as a horizontal axis, but replacing H beta by a stronger line (H alpha or [O ii]), or substituting the ionization-level sensitive [O iii]/H beta ratio with the equivalent width of H alpha (W(H alpha)). Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50 per cent more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. In the course of this analysis, we were led to make the following points. (i) The Kewley et al. BPT line for galaxy classification is generally ill-used. (ii) Replacing [O iii]/H beta by W(H alpha) in the classification introduces a change in the philosophy of the distinction between LINERs and Seyferts, but not in its results. Because the W(H alpha) versus [N ii]/H alpha diagram can be applied to the largest sample of ELGs without loss of discriminating power between Seyferts and LINERs, we recommend its use in further studies. (iii) The dichotomy between Seyferts and LINERs is washed out by WLGs in the BPT plane, but it subsists in other diagnostic diagrams. This suggests that the right wing in the BPT diagram is indeed populated by at least two classes, tentatively identified with bona fide AGN and `retired` galaxies that have stopped forming stars and are ionized by their old stellar populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the over 400 known(1) exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets(2), including the first terrestrial exoplanet(3,4) (CoRoT-7b), have been discovered using a space mission(5) designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 +/- 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a `temperate` photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models(6) with an inferred interior composition consistent with that of Jupiter and Saturn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star eta Carinae (Car). The two bipolar nebulae commonly known as the Homunculus and the little Homunculus (LH) were formed from the interaction of these eruptive events with the underlying stellar wind. We assume here an interacting, non-spherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed decreased for a short period of time. This fact suggests that the LH is formed when the eruption ends, from the impact of the post-outburst eta Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; Gonzalez et al.). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The LH (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resemble the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the eta Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of eta Car.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, (similar to 10(15)-10(16) G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ""no hair"" (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas`s tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields similar to 10(15)-10(16) G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the similar to 10(15)-10(16) G fields when the compact object is a neutron star, but also when it is a black hole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of a sensitive Chandra X-ray observation and Spitzer mid-infrared (mid-IR) observations of the IR cluster lying north of the NGC 2071 reflection nebula in the Orion B molecular cloud. We focus on the dense cluster core known as NGC 2071-IR, which contains at least nine IR sources within a 40 `` x 40 `` region. This region shows clear signs of active star formation including powerful molecular outflows, Herbig-Haro objects, and both OH and H(2)O masers. We use Spitzer Infrared Array Camera (IRAC) images to aid in X-ray source identification and to determine young stellar object (YSO) classes using mid-IR colors. Spitzer IRAC colors show that the luminous source IRS 1 is a class I protostar. IRS 1 is believed to be driving a powerful bipolar molecular outflow and may be an embedded B-type star or its progenitor. Its X-ray spectrum reveals a fluorescent Fe emission line at 6.4 keV, arising in cold material near the protostar. The line is present even in the absence of large flares, raising questions about the nature of the ionizing mechanism responsible for producing the 6.4 keV fluorescent line. Chandra also detects X-ray sources at or near the positions of IRS 2, IRS 3, IRS 4, and IRS 6 and a variable X-ray source coincident with the radio source VLA 1, located just 2 `` north of IRS 1. No IR data are yet available to determine a YSO classification for VLA 1, but its high X-ray absorption shows that it is even more deeply embedded than IRS 1, suggesting that it could be an even younger, less-evolved protostar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With Two-Micron All-Sky Survey (2MASS) photometry and proper motions, Bonatto et al. suggested that FSR 1767 is a globular cluster (GC), while with J and K NTT/SOFI photometry Froebrich, Meusinger & Scholz concluded that it is not a star cluster. In this study, we combine previous and new evidence that are consistent with a GC. For instance, we show that the horizontal branch (HB) and red giant branch (RGB) stars, besides sharing a common proper motion, have radial density profiles that consistently follow the King`s law independently. Reddening maps around FSR 1767 are built using the bulge RGB as reference and also Schlegel`s extinction values to study local absorptions. Both approaches provide similar maps and show that FSR 1767 is not located in a dust window, which otherwise might have produced the stellar overdensity. Besides, neighbouring regions of similar reddening as FSR 1767 do not present the blue HB stars that are a conspicuous feature in the colour-magnitude diagram of FSR 1767. We report the presence of a compact group of stars located in the central parts of FSR 1767. It appears to be a detached post-collapse core, similar to those of other nearby low-luminosity GCs projected towards the bulge. We note that while the NTT/SOFI photometry of the star cluster FSR 1716 matches perfectly that from 2MASS, it shows a considerable offset for FSR 1767. We discuss the possible reasons why both photometries differ. We confirm our previous structural and photometric fundamental parameters for FSR 1767, which are consistent with a GC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.