997 resultados para Stable Carbon-isotope
Resumo:
On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.
Resumo:
Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45 degrees E and 80 degrees E and 10 degrees N to 53 degrees S) were analysed and compared with the equilibrium delta O-18 and delta C-13 values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within similar to 0.25% for the region between 10 degrees N and 40 degrees S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40 degrees S to 55 degrees S), however, the measured delta O-18 and delta C-13 values are higher than the expected values by similar to 2% and similar to 1% respectively. These enrichments can be attributed to either a `vital effect' or a higher calcification rate. An interesting pattern of increase in the delta C-13(DIC) value of the surface water with latitude is observed between 35 degrees S and similar to 60 degrees S, with a peak at similar to 42 degrees S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the delta C-13(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.
Depletion of the heaviest stable N isotope is associated with NH4 +/NH3 toxicity in NH4 +-fed plants
Resumo:
Background: In plants, nitrate (NO(3)(-)) nutrition gives rise to a natural N isotopic signature (delta(15)N), which correlates with the delta(15)N of the N source. However, little is known about the relationship between the delta(15)N of the N source and the (14)N/(15)N fractionation in plants under ammonium (NH(4)(+)) nutrition. When NH(4)(+) is the major N source, the two forms, NH(4)(+) and NH(3), are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH(3) (g) and NH(4)(+)(aq) which drives to a different delta(15)N. Nine plant species with different NH(4)(+)-sensitivities were cultured hydroponically with NO(3)(-) or NH(4)(+) as the sole N sources, and plant growth and delta(15)N were determined. Short-term NH(4)(+)/NH(3) uptake experiments at pH 6.0 and 9.0 (which favours NH(3) form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH(4)(+) and NH(3). -- Results: Several NO(3)(-)-fed plants were consistently enriched in (15)N, whereas plants under NH(4)(+) nutrition were depleted of (15)N. It was shown that more sensitive plants to NH(4)(+) toxicity were the most depleted in (15)N. In parallel, N-deficient pea and spinach plants fed with (15)NH(4)(+) showed an increased level of NH(3) uptake at alkaline pH that was related to the (15)N depletion of the plant. Tolerant to NH(4)(+) pea plants or sensitive spinach plants showed similar trend on (15)N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO(3) as control discarded that the differences observed arise from pH detrimental effects. -- Conclusions: This article proposes that the negative values of delta(15)N in NH(4)(+)-fed plants are originated from NH(3) uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH(4)(+)/NH(3) toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH(4)(+) may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.
Resumo:
IEECAS SKLLQG
Resumo:
Afforestation in China's subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests, plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover, we investigated SOC and its stable C isotope (delta C-13) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C, delta C-13 and total nitrogen. Similarly to the vertical distribution of SOC in natural forests, SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC delta C-13 composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass C-13 composition. Soil profiles with a change in photosynthetic pathway had a more complex C-13 isotope composition distribution. During the 20 years after plantation establishment, the soil organic matter sources influenced both the delta C-13 distribution with depth, and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (delta(13)C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble "uncharacterized" organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, delta(13) C and stable nitrogen (delta(15)N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples. a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of delta(13)C and delta(15)N measured for bulk HMW-DOM varied from -22.1 to -30.1parts per thousand and 2.8 to 8.9parts per thousand, respectively and varied among the four estuaries studied as well. Among the Compound classes, TCHO was more enriched in C-13 (delta(13)C = -18.5 to -22.8parts per thousand) compared with THAA (delta(13)C = -20.0 to -29.6parts per thousand) and total lipid (delta(13)C = -25.7 to -30.7parts per thousand). The acid-insoluble organic fractions, in general, had depleted C-13 values (delta(13)C = -23.0 to -34.4parts per thousand). Our results indicate that the observed differences in both delta(13)C and delta(15)N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures. Copyright (C) 2004 Elsevier Ltd.