981 resultados para Spin-orbit resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the C-HETSERF experiment for determination of long- and short-range homo- and heteronuclear scalar couplings ((n)J(HH) and (n)J(XH), n >= 1) of organic molecules with a low sensitivity dilute heteronucleus in natural abundance. The method finds significant advantage in measurement of relative signs of long-range heteronuclear total couplings in chiral organic liquid crystal. The advantage of the method is demonstrated for the measurement of residual dipolar couplings (RDCs) in enantiomers oriented in the chiral liquid crystal with a focus to unambiguously assign R/S designation in a 2D spectrum. The alignment tensor calculated from the experimental RDCs and with the computed structures of enantiomers obtained by DFT calculations provides the size of the back-calculated RDCs. Smaller root-mean-square deviations (rmsd) between experimental and calculated RDCs indicate better agreement with the input structure and its correct designation of the stereogenic center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the origin of de-enhancement for a number of vibrational modes in the 2(1)A(g) excited state of trans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 2(1)A(g) <-- 1(1)A(g) transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the extended Hubbard model to investigate the properties of the charge- and spin-density-wave phases in the presence of a nearest-neighbors repulsion term in the framework of the slave-boson technique. We show that, contrary to Hartree-Fock results, an instablity may occur for sufficiently high values of the Hubbard repulsion, both in the spin- and charge-density-wave phase, which makes the system discontinuously jump to a phase with a smaller or zero wave amplitude. The limits of applicability of our approach are discussed and our results are compared with previous numerical analysis. The phase diagram of the model at half-filling is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluoro substituted organic compounds have attracted attention owing to their unique structure and reactivity induced by the perfluoro effect. Fluoranil, a perfluoro derivative of p-benzoquinone, is the subject of this paper. Although the perfluoro effect in the ground state seems to have been well understood there is no information available about such effects on the excited state. Here, the time-resolved resonance Raman spectra of the triplet excited state of fluoranil are reported along with the Raman excitation profiles (REPs) of the various vibrational modes. The vibrational spectral analyses have been carried out by analogy with the fluoranil ground state, triplet benzoquinone, and triplet chloranil vibrational spectral assignments. Also, the assignments are further supported by the calculated frequencies using ab initio theoretical methods. It is observed that for fluoranil in the triplet excited state, due to the perfluoro effect, the structure is considerably less distorted than benzoquinone and also the electron delocalization in the pi* antibonding orbital is less than that of triplet excited state of benzoquinone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental realization of various spin ladder systems has prompted their detailed theoretical investigations. Hen we study the evolution of ground-state magnetization with an external magnetic field for two different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction. The finite system density-matrix renormalization-group method is employed for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magnetization plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero magnetization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magnetization for a certain range of values of the couplings. We study the regions of transitions between plateaus numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model, We also study numerically some low-temperature properties of the three-chain system, such as the magnetization, magnetic susceptibility and specific heat. [S0163-1829(99)303001-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study muon-spin rotation (mu SR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi2+xSr2-xCaCu2O8+delta (BSCCO), by modeling the fluid and solid phases of pancake Vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of mu SR line shapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid-state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the mu SR data for BSCCO in this regime can be obtained through the ansatz that this ''phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ''pinned liquid'' or ''glassy'' state of pancake Vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of mu SR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations. [S0163-1829(99)08033-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K-1 (model compound for Q(A) in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K-1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a recently formulated microscopic theory of the unusual coexistence of spin density waves (SDWs) and charge density waves (CDWs) that has been seen in recent experiments on (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments indicate that the spin-density waves (SDWs) in (TMTTF)(2)Br, (TMTSF)(2)PF6, and alpha-(BEDT-TTF)(2)MHg(SCN)(4) are highly unconventional and coexist with charge-density waves (CDWs). We present a microscopic theory of this unusual CDW-SDW coexistence. A complete understanding requires the explicit inclusion of strong Coulomb interactions, lattice discreteness, the anisotropic two-dimensional nature of the lattice, and the correct hand filling within the starting Hamiltonian. [S0031-9007(99)08498-7].