938 resultados para Speed Violation.
Resumo:
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Resumo:
OBJECTIVES This study sought to determine the effect of rotational atherectomy (RA) on drug-eluting stent (DES) effectiveness. BACKGROUND DES are frequently used in complex lesions, including calcified stenoses, which may challenge DES delivery, expansion, and effectiveness. RA can adequately modify calcified plaques and facilitate stent delivery and expansion. Its impact on DES effectiveness is widely unknown. METHODS The ROTAXUS (Rotational Atherectomy Prior to TAXUS Stent Treatment for Complex Native Coronary Artery Disease) study randomly assigned 240 patients with complex calcified native coronary lesions to RA followed by stenting (n = 120) or stenting without RA (n = 120, standard therapy group). Stenting was performed using a polymer-based slow-release paclitaxel-eluting stent. The primary endpoint was in-stent late lumen loss at 9 months. Secondary endpoints included angiographic and strategy success, binary restenosis, definite stent thrombosis, and major adverse cardiac events at 9 months. RESULTS Despite similar baseline characteristics, significantly more patients in the standard therapy group were crossed over (12.5% vs. 4.2%, p = 0.02), resulting in higher strategy success in the rotablation group (92.5% vs. 83.3%, p = 0.03). At 9 months, in-stent late lumen loss was higher in the rotablation group (0.44 ± 0.58 vs. 0.31 ± 0.52, p = 0.04), despite an initially higher acute lumen gain (1.56 ± 0.43 vs. 1.44 ± 0.49 mm, p = 0.01). In-stent binary restenosis (11.4% vs. 10.6%, p = 0.71), target lesion revascularization (11.7% vs. 12.5%, p = 0.84), definite stent thrombosis (0.8% vs. 0%, p = 1.0), and major adverse cardiac events (24.2% vs. 28.3%, p = 0.46) were similar in both groups. CONCLUSIONS Routine lesion preparation using RA did not reduce late lumen loss of DES at 9 months. Balloon dilation with only provisional rotablation remains the default strategy for complex calcified lesions before DES implantation.
Resumo:
Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland, Geophys. Res. Lett., 35, L24503, doi: 10.1029/2008GL036127.
Resumo:
Empirical data suggest that the race of calving of grounded glaciers terminating in water is directly proportional to the water depth. Important controls on calving may be the extent to which a calving face tends to become oversteepened by differential flow within the ice and the extent to which bending moments promote extrusion and bottom crevassing at the base of a calving face. Numerical modelling suggests that the tendency to become oversteepened increases roughly linearly with water depth. In addition, extending longitudinal deviatoric stresses at the base of a calving face increase with water depth. These processes provide a possible physical explanation for the observed calving-rate/water-depth relation.
Resumo:
In several extensions of the Standard Model, the top quark can decay into a bottom quark and a light charged Higgs boson H+, t -> bH(+), in addition to the Standard Model decay t -> bW. Since W bosons decay to the three lepton generations equally, while H+ may predominantly decay into tau nu, charged Higgs bosons can be searched for using the violation of lepton universality in top quark decays. The analysis in this paper is based on 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider. Signatures containing leptons (e or mu) and/or a hadronically decaying tau (tau(had)) are used. Event yield ratios between e+ tau(had) and e + mu, as well as between mu + tau(had) and mu + e, final states are measured in the data and compared to predictions from simulations. This ratio-based method reduces the impact of systematic uncertainties in the analysis. No significant deviation from the Standard Model predictions is observed. With the assumption that the branching fraction B(H+ -> tau nu) is 100%, upper limits in the range 3.2%-4.4% can be placed on the branching fraction B(t -> bH(+)) for charged Higgs boson masses m(H+) in the range 90-140GeV. After combination with results from a search for charged Higgs bosons in t (t) over bar decays using the tau(had) + jets final state, upper limits on B(t -> bH(+)) can be set in the range 0.8%-3.4%, for m(H+) in the range 90-160GeV.
Resumo:
Compared to μ→eγ and μ→eee, the process μ→e conversion in nuclei receives enhanced contributions from Higgs-induced lepton flavor violation. Upcoming μ→e conversion experiments with drastically increased sensitivity will be able to put extremely stringent bounds on Higgs-mediated μ→e transitions. We point out that the theoretical uncertainties associated with these Higgs effects, encoded in the couplings of quark scalar operators to the nucleon, can be accurately assessed using our recently developed approach based on SU(2) chiral perturbation theory that cleanly separates two- and three-flavor observables. We emphasize that with input from lattice QCD for the coupling to strangeness fNs, hadronic uncertainties are appreciably reduced compared to the traditional approach where fNs is determined from the pion-nucleon σ term by means of an SU(3) relation. We illustrate this point by considering Higgs-mediated lepton flavor violation in the standard model supplemented with higher-dimensional operators, the two-Higgs-doublet model with generic Yukawa couplings, and the minimal supersymmetric standard model. Furthermore, we compare bounds from present and future μ→e conversion and μ→eγ experiments.
Resumo:
We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.
Resumo:
Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Antegrade nailing of proximal humeral fractures using a straight nail can damage the bony insertion of the supraspinatus tendon and may lead to varus failure of the construct. In order to establish the ideal anatomical landmarks for insertion of the nail and their clinical relevance we analysed CT scans of bilateral proximal humeri in 200 patients (mean age 45.1 years (sd 19.6; 18 to 97) without humeral fractures. The entry point of the nail was defined by the point of intersection of the anteroposterior and lateral vertical axes with the cortex of the humeral head. The critical point was defined as the intersection of the sagittal axis with the medial limit of the insertion of the supraspinatus tendon on the greater tuberosity. The region of interest, i.e. the biggest entry hole that would not encroach on the insertion of the supraspinatus tendon, was calculated setting a 3 mm minimal distance from the critical point. This identified that 38.5% of the humeral heads were categorised as 'critical types', due to morphology in which the predicted offset of the entry point would encroach on the insertion of the supraspinatus tendon that may damage the tendon and reduce the stability of fixation. We therefore emphasise the need for 'fastidious' pre-operative planning to minimise this risk.
Resumo:
BACKGROUND Cognitive problems can have a negative effect on a person's education, but little is known about cognitive problems in young childhood cancer survivors (survivors). This study compared cognitive problems between survivors and their siblings, determined if cognitive problems decreased during recent treatment periods and identified characteristics associated with the presence of a cognitive problem in survivors. METHODS As part of the Swiss Childhood Cancer Survivor Study, a questionnaire was sent to all survivors, aged 8-20 years, registered in the Swiss Childhood Cancer Registry, diagnosed at age <16 years, who had survived ≥5 years. Parent-reported (aged 8-15 years) and self-reported (aged 16-20 years) cognitive problems (concentration, working speed, memory) were compared between survivors and siblings. Multivariable logistic regression was used to identify characteristics associated with cognitive problems in survivors. RESULTS Data from 840 survivors and 247 siblings were analyzed. More often than their siblings, survivors reported problems with concentration (12% vs. 6%; P = 0.020), slow working speed (20% vs. 8%; P = 0.001) or memory (33% vs. 15%; P < 0.001). Survivors from all treatment periods were more likely to report a cognitive problem than were siblings. Survivors of CNS tumors (OR = 2.82 compared to leukemia survivors, P < 0.001) and those who had received cranial irradiation (OR = 2.10, P = 0.010) were most severely affected. CONCLUSION Childhood cancer survivors, even those treated recently (2001-2005), remain at risk to develop cognitive problems, suggesting a need to improve therapies. Survivors with cognitive problems should be given the opportunity to enter special education programs. Pediatr Blood Cancer © 2014 Wiley Periodicals, Inc.
Resumo:
In these proceedings we review the flavour phenomenology of 2HDMs with generic Yukawa structures [1]. We first consider the quark sector and find that despite the stringent constraints from FCNC processes large effects in tauonic B decays are still possible. We then consider lepton flavour observables, show correlations between m →eg and m− →e−e+e− in the 2HDM of type III and give upper bounds on the lepton flavour violating B decay Bd →me.
Resumo:
We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.