951 resultados para Spectral radius


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing number of applications are calling for compact laser sources operating in the mid-infrared spectral region. A review of our recent work on monolithic fiber lasers (FL) based either on the use of rare-earth fluoride fibers or on Raman gain in both fluoride and chalcogenide glass fibers is presented. Accordingly, an erbium-doped double clad fluoride glass all-FL operating in the vicinity of 3 μm is shown. In addition, we present recent results on the first demonstrations of both fluoride and chalcogenide Raman fiber lasers operating at 2.23 and 3.34 μm, respectively. It is shown that based on this approach, monolithic FLs could be developed to cover the whole 2 to 4 μm spectral band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed laboratory experiments to investigate the sensitivity of the Spectral Induced Polarization (SIP) method to toluene contamination in clayey soils. We used mixtures of quartzitic sand and montmorillonite as soil samples, artificially contaminated with varying amounts of toluene. Care was taken to quantify the experimental uncertainty resulting from packing since such effects must be quantified if variations in SIP signatures between samples are to be reliably interpreted in terms of the effects of hydrocarbon concentration. The SIP response of all samples following addition of toluene was monitored for a period of 40 days following sample preparation. Stepwise regression was used to examine the statistical significance of correlations between (i) clay content and (ii) toluene concentration and SIP parameters. Both single-frequency real and imaginary conductivity measurements, along with the integral chargeability, normalized chargeability, DC conductivity and time constant obtained from a Debye decomposition fitting, were examined in this regression analysis. The SIP measurements show a clear time dependence following sample preparation, indicating that samples containing toluene may take significant time to reach an equilibrium electrical response. SIP measurements are significantly related to toluene content shortly after sample preparation, when the expected dependence of SIP on clay concentration is apparently suppressed. However, for the state of electrical equilibrium after 40 days (interpreted to indicate surface chemistry at equilibrium) there is no significant relation between SIP measurements and toluene content; instead SIP measurements are then significantly correlated with clay concentration. The total chargeability, normalized chargeability and relaxation time obtained from the Debye decomposition show no correlation with toluene content, indicating that this procedure, which likely integrates over multiple mechanisms, may not be suitable for understanding relationships between SIP and hydrocarbon contamination. We find only small low-frequency polarization signals observed in relation to toluene concentration (2 mrad at 0.01 Hz), which initially decreases the interfacial polarization. Unlike earlier works, our results do not support the use of the SIP method as a tool for monitoring toluene contamination in clay soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PTFE foils were irradiated with different ion beams (Xe, Au and U) with energies up to 1.5 GeV and fluences between 1 x 10(8) and 1 x 10(13) ions/cm(2) at room temperature. The induced modifications in the polymer were analyzed by FTIR, UV-Vis spectroscopy, and XRD. In the FTIR spectra, the CF2 degradation accompanied by the formation of CF3 terminal and side groups were observed. In the UV-Vis spectra, the observed increase in the absorption at UV wavelengths is an indication of polymer carbonization. From XRD, the amorphization of the material was evidenced by the decrease in the intensity of the main diffraction peak. An exponential fit of the intensity of the IR absorption peaks resulted in the following values: 2.9 +/- 0.8; 4.5 +/- 0.9 and 5.6 +/- 0.8 nm for the latent track radius after irradiation with Xe, Au and U beams, respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spectral functions, and in particular the zeta function, associated to a class of sequences of complex numbers, called of spectral type. We investigate the decomposability of the zeta function associated to a double sequence with respect to some simple sequence, and we provide a technique for obtaining the first terms in the Laurent expansion at zero of the zeta function associated to a double sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the retinal nerve fiber layer measurements with time-domain (TD) and spectral-domain (SD) optical coherence tomography (OCT), and to test the diagnostic ability of both technologies in glaucomatous patients with asymmetric visual hemifield loss. Methods: 36 patients with primary open-angle glaucoma with visual field loss in one hemifield (affected) and absent loss in the other (non-affected), and 36 age-matched healthy controls had the study eye imaged with Stratus-OCT (Carl Zeiss Meditec Inc., Dublin, California, USA) and 3 D OCT-1000 (Topcon, Tokyo, Japan). Peripapillary retinal nerve fiber layer measurements and normative classification were recorded. Total deviation values were averaged in each hemifield (hemifield mean deviation) for each subject. Visual field and retinal nerve fiber layer "asymmetry indexes" were calculated as the ratio between affected versus non-affected hemifields and corresponding hemiretinas. Results: Retinal nerve fiber layer measurements in non-affected hemifields (mean [SD] 87.0 [17.1] mu m and 84.3 [20.2] mu m, for TD and SD-OCT, respectively) were thinner than in controls (119.0 [12.2] mu m and 117.0 [17.7] mu m, P<0.001). The optical coherence tomography normative database classified 42% and 67% of hemiretinas corresponding to non-affected hemifields as abnormal in TD and SD-OCT, respectively (P=0.01). Retinal nerve fiber layer measurements were consistently thicker with TD compared to SD-OCT. Retinal nerve fiber layer thickness asymmetry index was similar in TD (0.76 [0.17]) and SD-OCT (0.79 [0.12]) and significantly greater than the visual field asymmetry index (0.36 [0.20], P<0.001). Conclusions: Normal hemifields of glaucoma patients had thinner retinal nerve fiber layer than healthy eyes, as measured by TD and SD-OCT. Retinal nerve fiber layer measurements were thicker with TD than SD-OCT. SD-OCT detected abnormal retinal nerve fiber layer thickness more often than TD-OCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral decomposition has rarely been used to investigate complex networks. In this work we apply this concept in order to define two kinds of link-directed attacks while quantifying their respective effects on the topology. Several other kinds of more traditional attacks are also adopted and compared. These attacks had substantially diverse effects, depending on each specific network (models and real-world structures). It is also shown that the spectrally based attacks have special effects in affecting the transitivity of the networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.