931 resultados para Spectral Element Method
Resumo:
Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.
Resumo:
We begin our studies to make the best of information of seismic data and carry out the description of cracks parameters by extracting anisotropic information. The researching contents are: (1) velocity and polarization anomaly of seismic wave (qP and qSV wave) in weak anisotropic media; (2) reflection seismic synthetic record in anisotropic media; (3) multiple scattering induced by cracks; (4) anisotropic structure inversion and velocity reconstruction with VSP (Vertical Seismic Profile) data; (5) multi-parameters analysis of anisotropy in time-domain and depth-domain. Then we obtain results as follows: (1) We achieve approximate relation of qP and qSV wave's velocity and polarization property in weak anisotropic media. At the same time, we calculate anisotropic velocity factors and polarization anomaly of several typical sedimentary rocks. The results show there are different anisotropic velocity factors and polarization anomaly in different rocks. It is one of the primary theoretical foundation which is expected to identify lithology; (2) We calculate reflection seismic synthetic record with theoretical model; (3) We simulate scattering induced by cracks with Boundary Element Method. Numerical studies show that in the presence of cracks; spatial and scale-length distributions are important and cannot be ignored in modeling cracked solids; (4) From traveltimes information of VSP data, we study the velocity parameter inversion of seismic wave under isotropic and anisotropic models, and its result indicate that the inversion imaging under anisotropic model will not destroy the original features of isotropic model, but it will bring on some bigger error if we adopt the method of isotropic model for anisotropic model data. Further more, basing on the study we develop the CDP mapping technology of reflecting structure under isotropic and anisotropic models, and we process real data as a trial of the methods; (5) We study the problem of initial model reconstruction of anisotropic parameters structure represented by Anderson parameter in depth domain for surface data.
Resumo:
Nansha Islands as sacred territory of China, containing abundant natural resources is the important area of sustaining development of Chinese people. Safeguarding and developing Nansha Islands has become one important part to develop ocean resource of China in 21 century. Engineering geological problems will be faced inevitably in the processes of engineering construction. Coral reef is a new kind of soil and rock and has special engineering characteristics. This doctoral dissertation researches deeply and systematically the regional engineering geology environmental properties and quality, engineering geological characteristics of coral reefs sand on the basis of synthetic analysis of hydrology, climate, geology, geomorphology and engineering field exploration information and combining the experimental data. 1. Put forward the division program of engineering geological environment of Nansha Islands according to the data of hydrology, geology and sediments, and also deeply study the properties of each division. Evaluate the quality of engineering geological environment by fuzzy mathematics and draw the evaluation map of quality of engineering geological environment. The research work provides background support of engineering geological environment to program of resource development in Nansha Islands. 2. Structures of coral reefs have been analyzed. The model of engineering geological zone has been proposed on the basis of geomorphologic zone and combining the strata and ocean dynamic environment. The engineering construction appropriation of each zone is praised. 3. The physical and mechanical properties of coral sands are researched. The results show that coral sands have high void ratio, non-regular shape, easy grain crushing and large compressibility. Shear-expansion takes place only at very low confining pressure and shear-contraction of volumetric strain occurs at higher confining pressure. Internal friction angle decreases with the increasing of confining pressure. The grain crushing property is the main factor influencing the mechanical characteristics. 4. A revised E-ν constitutive model is proposed which considers the change of internal friction angle with confining pressure, and parameter values are also determined. 5. The stability of Yongshu Reef by is analysed for the purpose of serving engineering struction. The process and mechanism of deformation and failure of foundation and slope is analyzed by finite-element method.
Resumo:
The practice of coalbed methane development from home and abroad demonstrated Hydrogeological factor is one of the important geological factors influencing the coalbed methane productivity. The grasp of groundwater behavior feature is the prerequisite to success development of coalbed methane. Through researching the mechanism by which hydrodynamics factors control the storage and transportation of coalfen methane, the ground- water behavior reflecting the feature of coalbed, and mathematics model describing the production process of coalbed methane, this paper devoted to finding the law of groundwater behavior during the course of storage and production and gave hydrogeology theoretical support to the development of coalbed methane. This paper firstly studied hydrodynamic factors influencing the productivity of coalbed methane, based on the analysis of the relative feature of coalbed methane and that of it's reservoir. The productivity of coalbed methane is controlled by reservoir pressure、permeability and recharge conditions. Reservoir pressure, the key factor controlling gas content of coalbed, is ruled by the history of hydrodynamic and current hydrogeological conditions. It indirectly controls the poductivity through influencing the permeability. The permeability of coalbed is the direct factor controlling the productivity. The recharge conditions controls the productivity through influencing initial reservoir pressure and the descend of reservoir pressure during development of coalbed methane. The field of hydrodynamic and the field of hydrochemistry can be used to identified the flow model of groundwater and the coalbed feature can be deducted by the hydraulic gradient、pressure compartment and hydrochemistry. The production of coalbed methane is a complex physical process which including the mutual action between water、solid and gas. This paper studied the mechanism of water-solid action and that of water-gas action, conducted the controlling equation describing the complex process and gave the corresponding mathematics model with its solution by finite-Element method. Finally, this paper analysised the prospective of coalbed methane development of the south section of Hongguo area in Yizikong basin and put emphasis on the analysis of productivity of liangshan and jingzhuping blocks.
Resumo:
As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum
VHlhro)
point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fN
Resumo:
Based on the study of the combined flooding test block of Guantao formation in Third faulted block of Yangsanmu oil field, this paper carries out the integration of reservoir precise characterization for very high water cut reservoir, establishes precise 3D geologic model for high water cut development period and states the changing law of the reservoir architecture dtiring development by combined flooding. Then, by subdivided the thick oil reservoir, the study of remaining oil saturation monitoring in fiber glass cased well and tracer monitoring is developed. According the study of multiple constrained combined flooding reservoir numerical simulation, remaining oil distribution are predicted, the methods architecture of predicting remaining oil distribution are established for fluvial facies reservoir at late development stage, develops plan is designed and adjustment associating technologies for enhancing oil recovery. On these base, related measures for tapping the potential are given, it is verified and optimized through the field former test and the good economic effect is achieved . The major achievements of this paper are as follows. The changing law of the reservoir architecture and it's property parameters is revealed, The result indicates that the temperature-pressure of the injecting material and the interaction effect of the injecting material and reservoir petrography are the main factors of the dynamic changes of the reservoir architecture. The quantitative reservoir geologic model, which is tallied with dynamic reservoir parameters of the study area, is established. Subdivided the thick oil reservoir is very important for the study of the remaining oil distribution within the thick oil reservoir. Subdivided the thick oil reservoir technology, which consists of six technologies as follow: micro-cyclic divided, flow unit method, architectural element method, high resolution log technology, high resolution-process technology for normal logging data and using the production data is presented. 3. It is established dynamic monitoring system of remaining oil saturation quantitative research which are inner and interlayer remaining oil saturation from time-lapse logging in fiber glass cased well, inter-well remaining oil saturation from the technology of isotopic tracer monitoring technology, and 4d remaining oil saturation distribution from combined flooding numerical modeling integrated by production datao The forming mechanism of remaining oil for polymer flooding and alkali/polymer combined flooding is clarified, and the plane and vertical distribution law of remaining oil after combined flooding is revealed. Predicting methods and technologies for the combined flooding reservoir of fluvial facies is developed. Combined flooding has been achieved good displacement result in the pilot of Third fault block in Yangsanmu oil field, and accumulated types of important parameters and optimum plans, this technology of combined flooding is expected to increase recovery ratio by 4.77%.
Resumo:
The CSAMT method is playing an important role in the exploration of geothermal and the pre-exploration in tunnel construction project recently. In order to instruct the interpretation technique for the field data, the forward method from ID to 3D and inversion method in ID and 2D are developed in this paper for the artificial source magnetotelluric in frequency domain. In general, the artificial source data are inverted only after the near field is corrected on the basis of the assumption of half-homogeneous space; however, this method is not suitable for the complex structure because the assumption is not valid any more. Recently the new idea about inversion scheme without near field correction is published in order to avoid the near field correction error. We try to discuss different inversion scheme in ID and 2D using the data without near field correction.The numerical integration method is used to do the forward modeling in ID CSAMT method o The infinite line source is used in the 2D finite-element forward modeling, where the near-field effect is occurred as in the CSAMT method because of using artificial source. The pseudo-delta function is used to modeling the source distribution, which reduces the singularity when solving the finite-element equations. The effect on the exploration area is discussed when anomalous body exists under the source or between the source and exploration area; A series of digital test show the 2D finite element method are correct, the results of modeling has important significant for CSAMT data interpretation. For 3D finite-element forward modeling, the finite-element equation is derived by Galerkin method and the divergence condition is add forcedly to the forward equation, the forward modeling result of the half homogeneous space model is correct.The new inversion idea without near field correction is followed to develop new inversion methods in ID and 2D in the paper. All of the inversion schemes use the data without near field correction, which avoid introducing errors caused by near field correction. The modified grid parameter method and the layer-by-layer inversion method are joined in the ID inversion scheme. The RRI method with artificial source are developed and finite-element inversion method are used in 2D inversion scheme. The inversion results using digital data and the field data are accordant to the model and the known geology data separately, which means the inversion without near field correction is accessible. The feasibility to invert the data only in exploration area is discussed when the anomalous body exists between the source and the exploration area.
Resumo:
In this study, 260 mollusk fossil samples from a Red Clay sequence at Xifeng, Gansu province, in the northern China were analyzed quantitatively. 12 fossil species and four fossil zones have been identified. Three main ecological groups were determined based on ecological requirement of each mollusk taxon. According to fossil composition and succession of three ecological groups, the author discussed the origin and sedimentary environment of the red clay deposits, and the process of ecological environmental changes as well as the variations of the East Asia monsoons during 6.2-2.4 Ma in the Loess Plateau. A preliminary study on periodicity of paleoclimatic changes was also conducted by using spectral analysis method. The main results and conclusions are presented as follows:A continuous land mollusk fossil sequence of 6.2-2.4 Ma from Xifeng Red Clay Formation has been established, which provided a basic data for studying the environmental changes during late Miocene to Pliocene.The study of composition and preservation condition of mollusk fossils reveals a terrestrial in situ ecological population in the Red Clay Formation. All of identifiable mollusk species are composed of terrestrial taxa, which support the view that the Red Clay is an eolian origin, similar to the overlying Quaternary loess deposits.The mollusk record reveals the processes of ecological and environmental changes during 6.2-2.4 Ma in the Loess Plateau. Climatic changes experienced cold and dry from 6.2-5.4 Ma, warm and wet during 5.4-4.5 Ma, mild and moderate from 4.5-3-4 Ma, to rapid cooling and drying after 3.4 Ma. From '5.4- 2.4 Ma, climate was stepwise cooling. The cooling trend is in good agreement with a general1 0global cooling trend during this period, as documented by marine 5 0 records.4. Three remarked ecological shifts took place in mollusk assemblages from 6.2-2.4 Ma, focused on about 5.4, 4.5 and 3.4 Ma. The warming shift around 5.4 Ma was probably related to the rising of the global temperature. The cooling shifts around 4,5 and 3.4 Ma however might be closely linked to the uplift of Tibet Plateau and the development of Northern Hemisphere ice sheet.The succession in mollusk ecological groups also recorded the variability of the East Asian winter and summer monsoon. The winter monsoon dominated two periods from 6.2-5.4 Ma and from 3.4-2.4 Ma, while the summer monsoon was strong during 5.4-4.5 Ma. The variations in winter and summer monsoons were in phase during 4.5-3.4 Ma. Monsoon regimes changed with the duration about 1 Ma, which roughly corresponds to the cycle driven by tectonic activity on the time scales of ICP-IO7 years. In addition, mollusk fossils recorded the large amplitude and high frequency fluctuations overlapped on 105-107 years climate cycle.The maximum entropy spectral analysis and filter-band analysis of total mollusk individuals and three typical ecological groups suggest that the climate changes controlled mainly by solar insolation had periods about 70 ka and 40 ka on the time scales of 105 during late Miocene-Pliocene. Climatic periodicity intensified from 4.0 Ma, which reflected strengthened forcing by high latitude ice volume.
Resumo:
With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.
Resumo:
A model for understanding the formation and propagation of modes in curved optical waveguides is developed. A numerical method for the calculation of curved waveguide mode profiles and propagation constants in two dimensional waveguides is developed, implemented and tested. A numerical method for the analysis of propagation of modes in three dimensional curved optical waveguides is developed, implemented and tested. A technique for the design of curved waveguides with reduced transition loss is presented. A scheme for drawing these new waveguides and ensuring that they have constant width is also provided. Claims about the waveguide design technique are substantiated through numerical simulations.
Resumo:
This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing.
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Resumo:
A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.
Resumo:
The parallelization of existing/industrial electromagnetic software using the bulk synchronous parallel (BSP) computation model is presented. The software employs the finite element method with a preconditioned conjugate gradient-type solution for the resulting linear systems of equations. A geometric mesh-partitioning approach is applied within the BSP framework for the assembly and solution phases of the finite element computation. This is combined with a nongeometric, data-driven parallel quadrature procedure for the evaluation of right-hand-side terms in applications involving coil fields. A similar parallel decomposition is applied to the parallel calculation of electron beam trajectories required for the design of tube devices. The BSP parallelization approach adopted is fully portable, conceptually simple, and cost-effective, and it can be applied to a wide range of finite element applications not necessarily related to electromagnetics.
Resumo:
In this paper the use of free-surface techniques, within the framework of a finite volume methodology, are investigated for the simulation of metal forming processes. In such processes, for example extrusion and forging, a workpiece is subjected to large scale deformation to create the product's shape. The use of Eulerian free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remmeshing. Two free-surface techniques to predict this final shape offers the advantage, over the traditionally used Lagrangian finite element method, of not requiring remesingh. Two free-surface techniques are compared by modelling a typical example of this type of process - non-Newtonian extrusion of an aluminium workpiece through a conical die.