927 resultados para Spatial multi-beam module
Resumo:
Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. The Cardiac ARIA project, with its extensive use of geographic Information Systems (GIS), ranks each of Australia’s 20,387 urban, rural and remote population centres by accessibility to essential services or resources for the management of a cardiac event. This unique, innovative and highly collaborative project delivers a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia. Cardiac ARIA is innovative. It is a model that could be applied internationally and to other acute and chronic conditions such as mental health, midwifery, cancer, respiratory, diabetes and burns services. Cardiac ARIA was designed to: 1. Determine by expert panel, what were the minimal services and resources required for the management of a cardiac event in any urban, rural or remote population locations in Australia using a single patient pathway to access care. 2. Derive a classification using GIS accessibility modelling for each of Australia’s 20,387 urban, rural and remote population locations. 3. Compare the Cardiac ARIA categories and population locations with census derived population characteristics. Key findings are as follows: • In the event of a cardiac emergency, the majority of Australians had very good access to cardiac services. Approximately 71% or 13.9 million people lived within one hour of a category one hospital. • 68% of older Australians lived within one hour of a category one hospital (Principal Referral Hospital with access to Cardiac Catheterisation). • Only 40% of indigenous people lived within one hour of the category one hospital. • 16% (74000) of indigenous people lived more than one hour from a hospital. • 3% (91,000) of people 65 years of age or older lived more than one hour from any hospital or clinic. • Approximately 96%, or 19 million, of people lived within one hour of the four key services to support cardiac rehabilitation and secondary prevention. • 75% of indigenous people lived within one hour of the four cardiac rehabilitation services to support cardiac rehabilitation and secondary prevention. Fourteen percent (64,000 persons) indigenous people had poor access to the four key services to support cardiac rehabilitation and secondary prevention. • 12% (56,000) of indigenous people were more than one hour from a hospital and only had access one the four key services (usually a medical service) to support cardiac rehabilitation and secondary prevention.
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
During the 1980s, terms such as interagency or multi-agency cooperation, collaboration, coordination, and interaction have became permanent features of both crime prevention rhetoric and government crime policy. The concept of having the government, local authorities, and the community working in partnership has characterized both left and right politics for over a decade. The U.S. National Advisory Commission on Criminal Justice Standards and Goals in the U.S.. Circulars 8/84 and 44/90 released by the U.K. Home Office, and the British Morgan Report-coupled with the launch of government strategies in France, the Netherlands, England and Wales, Australia, and, more recently, in Belgium, New Zealand, and Canada-have all emphasized the importance of agencies working together to prevent or reduce crime. This paper draws upon recent Australian research and critically analyzes multi-agency crime prevention. It suggests that agency conflicts and power struggles may be exacerbated by neo-liberal economic theory, by the politics of crime prevention management, and by policies that aim to combine situational and social prevention endeavors. Furthermore, it concludes that indigenous peoples are excluded by crime prevention strategies that fail to define and interpret crime and its prevention in culturally appropriate ways.
Resumo:
PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.
Resumo:
When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.
Resumo:
Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Another beneficial characteristic is that they allow torsionally rigid rectangular flanges to be combined with economical fabrication processes. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems. When used as floor joists, these sections require openings in the web to provide access for inspection and other services. At present, however, there is no design method available that provides accurate predictions of the moment capacities of LSBs with web openings. This paper presents the results of an investigation of the buckling and ultimate strength behaviour of LSB flexural members with web openings. A detailed fine element analysis (FEA)-based parametric study was conducted with the aim of developing appropriate design rules and making recommendations for the safe design of LSB floor joists. The results include the required moment capacity curves for LSB sections with a range of web opening combinations and spans and the development of appropriate design rules for the prediction of the ultimate moment capacities of LSBs with web openings.
Resumo:
The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.
Resumo:
The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.
Resumo:
Background/aims: Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Recent evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. Method: This project, with its extensive use of Geographic Information Systems (GIS) technology, will rank 11,338 rural and remote population centres to identify geographical ‘hotspots’ where there is likely to be a mismatch between the demand for and actual provision of cardiovascular services. It will, therefore, guide more equitable provision of services to rural and remote communities. Outcomes: The CARDIAC-ARIA project is designed to; map the type and location of cardiovascular services currently available in Australia, relative to the distribution of individuals who currently have symptomatic CVD; determine, by expert panel, what are the minimal requirements for comprehensive cardiovascular health support in metropolitan and rural communities and derive a rating classification based on the Accessibility and Remoteness Index of Australia (ARIA) for each of Australia's 11,338 rural and remote population centres. Conclusion: This unique, innovative and highly collaborative project has the potential to deliver a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia.
Resumo:
Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.
Resumo:
A new spatial logic encompassing redefined concepts of time and place, space and distance, requires a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organizations operating in a dynamic business world. Together with substantial economic and cultural shifts and an increased emphasis on lifestyle considerations, the advances in information technology have prompted a radical re-ordering of organizational relationships and the associated structures, processes, and places of doing business. Within the duality of space and an augmentation of the traditional notions of place, organizational and institutional structures pose new challenges for the design professions. The literature reveals that there has always been a mono-organizational focus in relation to workplace design strategies and the burgeoning trend towards inter-organizational collaboration, enabled the identification of a gap in the knowledge relative to workplace design. The NetWorkPlaceTM© constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
The method on concurrent multi-scale model of structural behavior (CMSM-of-SB) for the purpose of structural health monitoring including model updating and validating has been studied. The detailed process of model updating and validating is discussed in terms of reduced scale specimen of the steel box girder in longitudinal stiffening truss of a long span bridge. Firstly, some influence factors affecting the accuracy of the CMSM-of-SB including the boundary restraint regidity, the geometry and material parameters on the toe of the weld and its neighbor are analyzed using sensitivity method. Then, sensitivity-based model updating technology is adopted to update the developed CMSM-of-SB and model verification is carried out through calculating and comparing stresses on different locations under various loading from dynamic characteristic and static response. It can be concluded that the CMSM-of-SB based on the substructure method is valid.
Resumo:
This paper presents a feasible spatial collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
Time-varying bispectra, computed using a classical sliding window short-time Fourier approach, are analyzed for scalp EEG potentials evoked by an auditory stimulus and new observations are presented. A single, short duration tone is presented from the left or the right, direction unknown to the test subject. The subject responds by moving the eyes to the direction of the sound. EEG epochs sampled at 200 Hz for repeated trials are processed between -70 ms and +1200 ms with reference to the stimulus. It is observed that for an ensemble of correctly recognized cases, the best matching timevarying bispectra at (8 Hz, 8Hz) are for PZ-FZ channels and this is also largely the case for grand averages but not for power spectra at 8 Hz. Out of 11 subjects, the only exception for time-varying bispectral match was a subject with family history of Alzheimer’s disease and the difference was in bicoherence, not biphase.
Resumo:
We examine methodologies and methods that apply to multi-level research in the learning sciences. In so doing we describe how multiple theoretical frameworks informs the use of different methods that apply to social levels involving space-time relationships that are not accessible consciously as social life is enacted. Most of the methods involve analyses of video and audio files. Within a framework of interpretive research we present a methodology of event-oriented social science, which employs video ethnography, narrative, conversation analysis, prosody analysis, and facial expression analysis. We illustrate multi-method research in an examination of the role of emotions in teaching and learning. Conversation and prosody analyses augment facial expression analysis and ethnography. We conclude with an exploration of ways in which multi-level studies can be complemented with neural level analyses.