843 resultados para Spam email filtering
Resumo:
Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.