996 resultados para Sound Speed
Resumo:
A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.
Resumo:
This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.
Resumo:
Composers of digital music today have a bewildering variety of sound-processing tools and techniques at their disposal. At their best, these tools allow composers to hone a sound to perfection. However, they can also lead us into a routine which bypasses avenues of experimentation, simply because the known tools work so well and their sonic output is so attractive. An alternative strategy is oracular sound processing. An oracular sound processor creates a derived version of its input whose characteristics could not have been fully predicted, while affording the user little or no parametric control over the process.
Resumo:
Ambisonics and higher order ambisonics (HOA) technologies aim at reproducing sound field either synthesised or previously recorded with dedicated microphones. Based on a spherical harmonic decomposition, the sound field is more precisely described when higher-order components are used. The presented study evaluated the perceptual and objective localisation accuracy of the sound field encoded with four microphones of order one to four and decoded over a ring of loudspeakers. A perceptual test showed an improvement of the localisation with higher order ambisonic microphones. Reproduced localisation indices were estimated for the four microphones and the respective synthetic systems of order one to four. The perceptual and objective analysis revealed the same conclusions. The localisation accuracy depends on the ambisonic order as well as the source incidence. Furthermore, impairments linked to the microphones were highlighted.