919 resultados para Solid state physics
Resumo:
We show that the alloy disorder potential can be a possible cause for the valley splitting observed in the Si/Si1-xGex heterostructures at high magnetic fields and low electron densities.
Resumo:
The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The EPR spectra of microwave-prepared 70NaPO(3):30PbO glasses containing different weight percentages of manganese ions have been studied. The EPR spectra exhibit a well-resolved hyperfine pattern at g(eff) approximate to 2.0. Optical absorption, fluorescent emission and excitation spectra of the glasses have been examined. The absorption spectrum exhibits a peak near 500 nm and this has been attributed to the spin-allowed E-5(g) --> T-5(2g) transition of Mn3+ ions. The emission spectrum shows a band at 595 nm which has been assigned to the T-4(1g)(G) --> (6)A(1g)(S) spin-forbidden transition of Mn2+ ions in octahedral coordination. Concentration quenching of fluorescence was found to occur above 0.75 wt% of Mn2+ ions. The excitation spectra exhibit four bands characteristic of Mn2+ ions in octahedral coordination. From the observed band positions of the excitation spectra, the crystal field parameter D-q and the Racah interelectronic repulsion parameters, B and C have been calculated. A structural model is proposed based on the IR, Raman and MASNMR studies according to which Mn2+ ions are likely to occupy sites similar to Na+ ions in these glasses.
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
We report the electrical conductivity between 2 and 300 K for LaNi1-xFexO3 across the composition-controlled metal-insulator (m-i) transition. Using a method first suggested by Mobius, we identify the critical concentration x(c) to be 0.3 for the m-i transition. The negative temperature coefficient of resistivity observed at low temperatures in the metallic phase follows a temperature dependence characteristic of disorder effects. The semiconducting compositions (x greater than or equal to 0.3) do not show a simple activation energy but exhibit variable-range hopping at high temperatures confirming that the m-i transition in this system is driven by increasing disorder effects.
Resumo:
We have measured the thermopower (S) of hole-doped LaMnO3 systems in order to see its dependence on the Mn4+ content as well as to investigate other crucial factors that determine S. We have carried out hole doping (creation of Mn4+ by two distinct means, namely, by the substitution of La by divalent cations such as Ca and Sr and by self-doping without aliovalent substitution). The thermopower is sensitive not only to the hole concentration but also to the process employed for hole doping, which we explain as arising from the differences in the nature of the hole-doped states. We also point out a general trend in the dependence of S on hole concentration at high temperatures (T> T-c), similar to that found in the normal-state thermopower of the cuprates.
Resumo:
Detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out to investigate the emergence of criticality in the single-particle orientational relaxation near the isotropic-nematic (IN) phase transition. The simulations show a sudden appearance of a power-law behavior in the decay of the second-rank orientational relaxation as the IN transition is approached. The simulated value of the power-law exponent is 0.56, which is larger than the mean-field value (0.5) but less than the observed value (0.63) and may be due to the finite size of the simulated system. The decay of the first-rank orientational time correlation function, on the other hand, is nearly exponential but its decay becomes very slow near the isotropic-nematic transition, The zero-frequency rotational friction, calculated from the simulated angular Velocity correlation function, shows a marked increase near the IN transition.
Resumo:
Zinc microtower and platestacks were synthesized by thermal evaporation of zinc. This synthesis was carried out under high vacuum conditions in the absence of catalyst and carrier gas. The morphology, composition and microstructural properties of the Zn nanostructures were studied by XRD, SEM and TEM. The synthesized microtowers and platestacks were single crystalline in nature. These microtowers and platestacks showed a layered structures consisting of several hexagonal nanoplates. Based on the morphological and composition analysis, we have proposed a vapor-solid mechanism to explain the growth of these nanostructures.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.
Resumo:
We report results of molecular dynamics investigations into neutral impurity diffusing within an amorphous solid as a function of the size of the diffusant and density of the host amorphous matrix. We find that self diffusivity exhibits an anomalous maximum as a function of the size of the impurity species. An analysis of properties of the impurity atom with maximum diffusivity shows that it is associated with lower mean square force, reduced backscattering of velocity autocorrelation function, near-exponential decay of the intermediate scattering function (as compared to stretched-exponential decay for other sizes of the impurity species) and lower activation energy. These results demonstrate the existence of size-dependent diffusivity maximum in disordered solids. Further, we show that the diffusivity maximum is observed at lower impurity diameters with increase in density. This is explained in terms of the Levitation parameter and the void structure of the amorphous solid. We demonstrate that these results imply contrasting dependence of self diffusivity (D) on the density of the amorphous matrix, p. D increases with p for small sizes of the impurity but shows an increase followed by a decrease for intermediate sizes of the impurity atom. For large sizes of the impurity atom, D decreases with increase in p. These contrasting dependence arises naturally from the existence of Levitation Effect.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Ionic conductivity in (PEG)(x)LiBr systems is measured using the complex impedance method in the temperature range -20 degrees C to 100 degrees C. For x = 6 and 10, above a certain concentration dependent temperature T-c, a power law fit based on mode coupling theory is seen to better explain the data than the Vogel-Tamman-Fulcher (VTF) expression. Li-7 NMR linewidth measurements indicate two regions of motional narrowing, one attributable to segmental motion and the other to translational diffusion.
Resumo:
The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.
Resumo:
Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.