975 resultados para Solid modelling
Resumo:
Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.
Resumo:
Aim: To develop a surveillance support model that enables prediction of areas susceptible to invasion, comparative analysis of surveillance methods and intensity and assessment of eradication feasibility. To apply the model to identify surveillance protocols for generalized invasion scenarios and for evaluating surveillance and control for a context-specific plant invasion. Location: Australia. Methods: We integrate a spatially explicit simulation model, including plant demography and dispersal vectors, within a Geographical Information System. We use the model to identify effective surveillance protocols using simulations of generalized plant life-forms spreading via different dispersal mechanisms in real landscapes. We then parameterize the surveillance support model for Chilean needle grass [CNG; Nassella neesiana (Trin. & Rupr.) Barkworth], a highly invasive tussock grass, which is an eradication target in south-eastern Queensland, Australia. Results: General surveillance protocols that can guide rapid response surveillance were identified; suitable habitat that is susceptible to invasion through particular dispersal syndromes should be targeted for surveillance using an adaptive seek-and-destroy method. The search radius of the adaptive method should be based on maximum expected dispersal distances. Protocols were used to define a surveillance strategy for CNG, but simulations indicated that despite effective and targeted surveillance, eradication is implausible at current intensities. Main conclusions: Several important surveillance protocols emerged and simulations indicated that effectiveness can be increased if they are followed in rapid response surveillance. If sufficient data are available, the surveillance support model should be parameterized to target areas susceptible to invasion and determine whether surveillance is effective and eradication is feasible. We discovered that for CNG, regardless of a carefully designed surveillance strategy, eradication is implausible at current intensities of surveillance and control and these efforts should be doubled if they are to be successful. This is crucial information in the face of environmentally and economically damaging invasive species and large, expensive and potentially ineffective control programmes.
Resumo:
Abstract is not available.
Resumo:
The value of CLIMEX models to inform biocontrol programs was assessed, including predicting the potential distribution of biocontrol agents and their subsequent population dynamics, using bioclimatic models for the weed Parkinsonia aculeata, two Lantana camara biocontrol agents, and five Mimosa pigra biocontrol agents. The results showed the contribution of data types to CLIMEX models and the capacity of these models to inform and improve the selection, release and post release evaluation of biocontrol agents. Foremost among these was the quality of spatial and temporal information as well as the extent to which overseas range data samples the species’ climatic envelope. Post hoc evaluation and refinement of these models requires improved long-term monitoring of introduced agents and their dynamics at well selected study sites. The authors described the findings of these case studies, highlighted their implications, and considered how to incorporate models effectively into biocontrol programs.
Resumo:
Camels (Camelus dromedarius) were introduced into Australia from the 1840s to the early 1900s for transport and hauling cargo in arid regions. Feral populations remained small until the 1930s when many were released after they were superseded for transport by trucks and rail. Although camels have a relatively slow population growth (<10% per annum), the population has not reached carrying capacity and therefore, requires control to reduce the increasing impacts on central Australia. The model developed for the Northern Territory suggested that currently there are insufficient numbers being removed. The model also investigated which control options would have greatest impacts and found harvesting to be most important. The extent to which commercial harvesting can feasibly reduce camel populations requires further analysis. Due to the wide dispersal of camels in Australia, fertility control, even if technically feasible, will not target adults, the most important age class of the population. Habitat preferences were also investigated in the model but more validation is required as the population is still under range expansion. Immediate action is suggested to alleviate future costs as camel populations and their impacts rise.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
Use of chloro and methyl substitution in crystal engineering and their interchangeability in terms of mode of packing have been examined in a series of substituted coumarins. Photoreactivity in the solid state lists been correlated with the crystallograhic structures of these coumarins. The packing of chloro-substituted aromatic compounds has been investigated by analysing the arrangement of 132 compounds. Results substantiate the use of the chloro group as a steering agent and show that the chloro and methyl groups are not always interchangeable.
Resumo:
This thesis concerns the development of mathematical models to describe the interactions that occur between spray droplets and leaves. Models are presented that not only provide a contribution to mathematical knowledge in the field of fluid dynamics, but are also of utility within the agrichemical industry. The thesis is presented in two parts. First, thin film models are implemented with efficient numerical schemes in order to simulate droplets on virtual leaf surfaces. Then the interception event is considered, whereby energy balance techniques are employed to instantaneously predict whether an impacting droplet will bounce, splash, or adhere to a leaf.
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
The objectives of this study were to predict the potential distribution, relative abundance and probability of habitat use by feral camels in southern Northern Territory. Aerial survey data were used to model habitat association. The characteristics of ‘used’ (where camels were observed) v. ‘unused’ (pseudo-absence) sites were compared. Habitat association and abundance were modelled using generalised additive model (GAM) methods. The models predicted habitat suitability and the relative abundance of camels in southern Northern Territory. The habitat suitability maps derived in the present study indicate that camels have suitable habitat in most areas of southern Northern Territory. The index of abundance model identified areas of relatively high camel abundance. Identifying preferred habitats and areas of high abundance can help focus control efforts.
Resumo:
The Best Use Modelling for Sustainable Australian Sports Field Surfaces project has achieved significant success. The project has attracted participation from councils throughout Australia, with in excess of 300 sports fields evaluated from 18 councils to date. An important project component is the derivation of a recommended standard procedure for specifying the performance of playing surfaces. An associated step has been to establish recommended playing surface performance standards for community level sports fields. The derived modelling also provides information on the expected usage and associated costs of different sports surface development options. This is expected to assist the Australian turf production industry through demonstrating to councils that cost effective natural turf options exist that can meet higher usage expectation (as a viable alternative to synthetic turf). A web-accessed data base system will be made available to councils from January 2010 on (reference to www.passturf.com). This system will enable participating councils to record and analyse field performance over time. The system is considered world-leading, and will help keep the Australian parks industry to the international forefront. Tools developed as part of the project offer councils the opportunity to internally assess the performance of their current sports field provision, to identify any deficiencies and to determine the best corrective measure if any deficiency is identified. This is expected to offer community benefits to both sports facility providers and facility user groups. In turn this will aid the provision of affordable community access to safe and good quality playing surfaces. Tools and associated information material will be made available to councils throughout Australia by the end of this year, via the Parks and Leisure Aust. web site. The Best Use Modelling Project is work in progress. On-going input will be needed to ensure the web-accessed database software is as user friendly as possible, new performance testing data will need to be inputted, and tools provided to participating councils updated. Through the support of HAL there is now a well-structured, nationally-supported system in place for benchmarking playing surfaces and for assisting councils to optimise their resource allocation to sports field upgrade or maintenance work.
Resumo:
A 10 MHz pulsed NMR spectrometer, built using mostly solid state devices, is described. The pulse programmer provides 2-pulse, 3-pulse, saturation burst and Carr-Purcell sequences both in repetitive and manual modes of operation. The transmitter has a maximum power output of ∼ 2 kW with a 75 Ω output impedance termination. The total gain of the receiver system is around 120 dB with a minimum band width of 2 MHz. The recovery time of the receiver is ∼ 7 µsec. A two-channel boxcar integrator capable of working in the single channel, differential and double boxcar modes provides signal to noise ratio improvement. The sensitivity and the linearity of the boxcar integrator are ∼ 2 mV and ∼ 0.1% respectively.