935 resultados para Soil carbon change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates some collateral effects caused by the application of the Fenton process to 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) and diesel degradation in soil. While about 80% of the diesel and 75% of the DDT present in the soil were degraded in a slurry system, the dissolved organic carbon (DOC) in the slurry filtrate increased from 80 to 880 mg l(-1) after 64 h of reaction and the DDT concentration increased from 12 to 50 mu g l(-1). Experiments of diesel degradation conducted on silica evidenced that soluble compounds were also formed during diesel oxidation. Furthermore, significant increase in metal concentrations was also observed in the slurry filtrate after the Fenton treatment when compared to the control experiment leading to excessive concentrations of Cr, Ni, Cu and Mn according to the limits imposed for water. Moreover, 80% of the organic matter naturally present in the soil was degraded and a drastic volatilization of DDT and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene was observed. Despite the high percentages of diesel and DDT degradation in soil, the potential overall benefits of its application must be evaluated beforehand taking into account the metal and target compounds dissolution and the volatilization of contaminants when the process is applied. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the characteristics and distribution of the soil humus fractions in representative ecosystems of central Brazil was carried out with special emphasis on the comparison between the soils under virgin vegetation-Cerrado-and those subjected to cultivation. In spite of the contrasted vegetation and cultural practices in the sites studied, the soil humus showed analogous characteristics: there was a negligible amount of plant residues, the humic and fulvic acids amounted to approximately 70% of the total organic carbon, and about 40% of these humic substances were in extremely stable association with the soil mineral fraction, the HCl-HF treatment being required for their extraction. The stability of such organo-mineral complexes increased slightly in the cultured sites. The study of the humic acid fraction showed increased oxidation and aromaticity in most of the cultivated sites: the lowest values for the IR alkyl vibrations and H/C atomic ratios and the highest ones for the optical density at 465 nm were observed in sites transformed into orchards, whereas the above changes were small in those used as pasture. The 14C NMR spectra confirmed that the proportion of polyalkyl structures decreased in the humic acids of soils subjected to cultivation, as opposed to that of carboxyl groups. In spite of the high stability inferred for the organic matter throughout the wide area examined, the samples from the original Cerrado as well as from those transformed into pastures showed, in laboratory conditions, higher mineralization rates than those from the sites subjected to cultivation. This is partly attributed to the decreased proportions of extractable humic substances in the latter. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its importance for designing evaporators and condensers, a review of the literature shows that heat transfer data during phase change of carbon dioxide is very limited, mainly for microchannel flows. In order to give a contribution on this subject, an experimental study of CO 2 evaporation inside a 0.8 mm-hydraulic diameter microchannel was performed in this work. The average heat transfer coefficient along the microchannel was measured and visualization of the flow patterns was conducted. A total of 67 tests were performed at saturation temperature of 23.3°C for a heat flux of 1800 W/(m2°C). Vapor qualities ranged from 0.005 to 0.88 and mass flux ranged from 58 to 235 kg/(m2s). An average heat transfer coefficient of 9700 W/(m2°C) with a standard deviation of 35% was obtained. Nucleate boiling was found to characterize the flow regime for the test conditions. The dryout of the flow, characterized by the sudden reduction in the heat transfer coefficient, was identified at vapor qualities around 0.85. Flow visualization results showed three flow patterns. For low vapor qualities (up to about 0.25), plug flow was predominant, while slug flow occurred at moderated vapor qualities (from about 0.25 to 0.50). Annular flow was the flow pattern for higher vapor qualities. Copyright © 2006 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil-transmitted helminths (STHs) form one of the most important groups of infectious agents and are the cause of serious global health problems. The most important STHs are roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus or Ancylostoma duodenale); on a global level, more than a billion people have been infected by at least one species of this group of pathogens. This review explores the general concepts of transmission dynamics and the environment and intensity of infection and morbidity of STHs. The global strategy for the control of soil-transmitted helminthiasis is based on (i) regular anthelminthic treatment, (ii) health education, (iii) sanitation and personal hygiene and (iv) other means of prevention with vaccines and remote sensoring. The reasons for the development of a control strategy based on population intervention rather than on individual treatment are discussed, as well as the costs of the prevention of STHs, although these cannot always be calculated because interventions in health education are difficult to measure. An efficient sanitation infrastructure can reduce the morbidity of STHs and eliminates the underlying cause of most poverty-related diseases and thus supports the economic development of a country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (Ca) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to Ca for J. thurifera and to higher Ca and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of Ca even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the infl uence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47% and 41%, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)