891 resultados para SnO2-TiO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaTiO3 is usually doped to achieve the temperature stability required by device applications, as well as to obtain a large positive temperature coefficient anomaly of resistivity (PTCR). Uniform distribution of dopants among the submicron dielectric particles is the key for optimal control of grain size and microstructure to maintain a high reliability. The system Ba0.84Pb0.16TiO3 was synthesized from high purity BaCO3, TiO2, PbO oxide powders as raw materials. Sb2O3, MnSO4 and ZnO were used as dopants and Al2O3, TiO2 and SiO2 as grain growth controllers. Phase composition was analyzed by using XRD and the microstructure was investigated by SEM. EDS attached to SEM was used to analyze phase composition specially related to abnormal grain growth. Electrical resistivities were measured as a function of temperature and the PTCR effect characterized by an abrupt increase on resistivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-ohmic properties of the 98.90% SnO2+(1-x)%CoO+0.05% Cr2O3+0.05% Nb2O5+x% MnO2 varistor system (all of them in mol %), as well as the influence of the oxidizing and reducing atmosphere on this system were studied in this work. Experimental evidence indicates that the electrical properties of the varistor depend on the defects that occur at the grain boundary and on the adsorbed oxygen species such as O''(2), O'(2), O in this region. Thermal treatments at 900 degreesC in oxygen and nitrogen atmospheres indicated such a dependence with the values of the non-linearity coefficient (alpha) increasing under oxygen atmosphere, being reduced in nitrogen atmosphere and restored after a new treatment in oxygen atmosphere, presenting a reversibility in the process. EDS analysis accomplished by SEM showed the distribution of the oxides in the varistor matrix. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effect of Nb2O5 addition on the microstructure of BaTiO3 was studied. From XRD diagrams, a diminution in tetragonality parameters with an increase in dopant concentration was observed. In order to determine morphology and composition of secondary phases in niobium-doped barium titanate, EDAX and SEM analyses were carried out. It was found that a concentration of dopant higher than 0.15 mol% leads to fine-grained BaTiO3 without abnormal grain growth. Otherwise, compositions of secondary phases correspond to the titanium-rich region in the BaO-TiO2 phase diagram. Besides, the titanium content in the precipitate increases with the Nb2O5 addition. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activity profiles of excess Pb-210 combined with chemical data determined in two sediment cores from Corumbatai River basin, São Paulo State, Brazil, provided new insights into the reconstruction of historical inputs of anthropogenic constituents, contributing to improving management strategies of the hydrological resources in the basin since most of the municipalities extensively utilize the waters of Corumbatai River and tributaries for drinking purposes, among other uses. Excellent significant relationships between loss on ignition (LOI) and organic matter were found for sediments of both analyzed profiles. Silica was found to be inversely related to organic matter at both analyzed profiles: its decrease accompanied an increase in the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na2O, K2O, CaO, MgO, Al2O3, P2O5, Fe2O3, MnO, and TiO2. It was possible to identify the role of organic matter on adsorption of several oxides/elements in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to 224 and 802 mg cm(-2) year(-1) were obtained, and are compatible with field evidence, indicating a higher value associated with sand mining activities interfering with the natural/normal sedimentation process, due to modifications of the channel drainage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A powder mixture of BaO and TiO2, was mechanochemically treated in a planetary ball mill in an air atmosphere for up to 4 h, using zirconium oxide vial and zirconium oxide balls as the milling medium. Mechanochemical reaction leads to the gradual formation of BaTiO3 phase. Phase evolution during synthesis and changes in powder size and morphology were monitored by XRD, DSC, IR and TEM analysis and it was shown that the formation of BaTiO3 phase was initiated after 60 min. Extended time of milling directed to formation of higher amount of BaTiO3 perovskite phase. Barium titanate with good crystallinity was formed after 240 min sintering without pre-calcination step was performed at 1330 degrees C for 2 It within heating rate 10 degrees C/min. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PZT ceramic powders were successfully prepared from the mixture of PbO, ZrO2 and TiO2 by mechanochemical synthesis in a planetary ball mill, under different milling conditions. Phase evolution during synthesis was monitored by X-ray diffraction analysis. Intensive milling resulted in formation of the nanocrystalline, perovskite PZT powders after 1 h of milling. This is a significant improvement in comparison to milling conditions reported by other authors. Depending on milling parameters the presence of some other phases, such as unreacted ZrO2, was also detected in some samples. The changes in powder size and morphology due to intensive milling, were determined by SEM and TEM, while BET analysis was used to determine specific surface area of the powders. Conclusions about processes taking place during mechanochemical synthesis of PZT powders were made based on the results of characterization. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, mechanochemical synthesis was widely used in preparation of perovskite type of materials, such as BaTiO3, PbTiO3, PZT, etc. In this work, the possibility of mechanochemical synthesis of CaTiO3 from different precursors, such as CaCO3 or CaO and TiO2 was investigated. Intensive milling of mixture of CaO and TiO2, under optimal milling conditions, resulted in synthesis of single phase CaTiO3. It was also found that intensive milling of powder mixture containing CaCO3 and TiO2 only activate the powders for the sintering process; hence the CaTiO3 could be obtained at lower temperatures of sintering. To complete reaction of CaTiO3 formation during milling it is necessary to reduce CO2 partial pressure, i.e. it is necessary to change the atmosphere inside the vials during milling. In this work, an explanation for difference in milling behavior of different precursors was proposed and discussed. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve the chemical resistance of zirconium fluoride glass a protective transparent SnO2 layer was deposited by the solgel dip-coating process in the presence of Tiron (R) as particle surface modifier agent. After water immersion for different periods of time, both coated and non-coated fluoride glasses were analyzed by scanning electron microscopy, mass loss evaluation, infrared spectroscopy and X-ray photoelectron spectroscopy. In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species, the results for the SnO2-coated glass showed that the filling of the film nanopores by dissolved glass material results in a hermetic barrier protecting the glass surface. The selective glass dissolution was confirmed by liquid chromatography measurements of the etching solution after each exposure time. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.