989 resultados para Sinking skin flap syndrome


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An octadecapeptide was isolated from the skin secretions of the dusky gopher frog (Rana sevosa) on the basis of histamine release from rat peritoneal mast cells. This peptide was purified to homogeneity by HPLC and found to have the following primary structure, YLKGCWTKSYPPKPCFSR, using both Edman degradation chemistry and peptide sequencing using high-resolution mass spectrometry (Q-TOF MS). The peptide, named peptide Tyrosine Arginine (pYR) shares 77.8% homology with peptide Leucine Arginine (pLR). The effects of the natural amidated peptide, non-amidated peptide and C-loop region of pYR on granulopoiesis and neutrophil apoptosis were investigated. All three analogues inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, the mature neutrophil. Thus, pYR is a novel member of an important and emerging new class of amphibian peptides with hemopoietic actions. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study investigated the schizophrenia phenotype in 24 subjects with 22q11 deletion syndrome (22qDS) and schizophrenia (22qDS-schizophrenia), a rare but relatively homogenous genetic subtype of schizophrenia associated with a microdeletion on chromosome 22. Individuals with 22qDS are at genetically high risk for schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are established sources of bioactive peptides. Here we describe the isolation, structural and pharmacological characterisation of a novel vasoconstrictor peptide from the skin secretion of the African hyperoliid frog, Kassina maculata, which exhibits no structural similarity to any known class of amphibian skin peptide. The peptide consists of 21 amino acid residues, FIKELLPHLSGIIDSVANAIK, and is C-terminally amidated. The provisional structure was obtained by MS/MS fragmentation using an Orbitrap mass spectrometer and L/I ambiguities were resolved following molecular cloning of biosynthetic precursor-encoding cDNA. A synthetic replicate of the peptide was found to possess weak antimicrobial and haemolytic activities but was exceptionally effective in constricting the smooth muscle of rat tail artery (EC50 of 25pM). In reflection of its exceptional potency in constricting rat arterial smooth muscle, the peptide was named kasstasin, a derivation of Kassina and “stasis” (stoppage of flow). These data illustrate the continuing potential of amphibian skin secretions to provide novel natural peptide templates for biological evaluation.