940 resultados para Signatures
Resumo:
Mutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas (<10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.
Resumo:
Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.
Resumo:
Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and alpha-element (Mg, Si, Ca, Ti) abundances: thick disk, high-alpha halo, and low-alpha halo. We find the oxygen abundance trends of thick-disk and high-alpha halo stars very similar. The low-alpha stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the a elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% +/- 2% of the local field metal-poor star population was born in GCs.
Resumo:
Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.
Resumo:
Aims. Spectroscopic, polarimetric, and high spectral resolution interferometric data covering the period 1995-2011 are analyzed to document the transition into a new phase of circumstellar disk activity in the classical Be-shell star 48 Lib. The objective is to use this broad data set to additionally test disk oscillations as the basic underlying dynamical process. Methods. The long-term disk evolution is described using the V/R ratio of the violet and red emission components of H alpha and Br gamma, radial velocities and profiles of He I and optical metal shell lines, as well as multi-band BVRI polarimetry. Single-epoch broad-band and high-resolution interferometric visibilities and phases are discussed with respect to a classical disk model and the given baseline orientations. Results. Spectroscopic signatures of disk asymmetries in 48 Lib vanished in the late nineties but recovered some time between 2004 and 2007, as shown by a new large-amplitude and long-duration V/R cycle. Variations in the radial velocity and line profile of conventional shell lines correlate with the V/R behavior. They are shared by narrow absorption cores superimposed on otherwise seemingly photospheric He I lines, which may form in high-density gas at the inner disk close to the photosphere. Large radial velocity variations continued also during the V/R-quiet years, suggesting that V/R may not always be a good indicator of global density waves in the disk. The comparison of the polarization after the recovery of the V/R activity shows a slight increase, while the polarization angle has been constant for more than 20 years, placing tight limits on any 3-D precession or warping of the disk. The broad H-band interferometry gives a disk diameter of (1.72 +/- 0.2) mas (equivalent to 15 stellar radii), position angle of the disk (50 +/- 9)degrees and a relatively low disk flattening of 1.66 +/- 0.3. Within the errors the same disk position angle is derived from polarimetric observations and from photocenter shifts across Br gamma. The high-resolution interferometric visibility and phase profiles show a double or even multiple-component structure. A preliminary estimate based on the size of the Br gamma emitting region indicates a large diameter for the disk (tens of stellar radii). Overall, no serious contradiction between the observations and the disk-oscillation model could be construed.
Resumo:
Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.
Resumo:
New geochronological and geochemical constraints on Precambrian sedimentary and volcanic successions exposed in the western part of the Central Domain of the Borborema Province, NE Brazil, indicate the presence of two distinct tectono-stratigraphic complexes: Riacho Gravata and Sao Caetano. Both complexes and associated orthogneisses are referred in the literature as the Cariris Velhos belt, having depositional, extrusive, or intrusive ages within the interval 985-913 Ma. The Riacho Gravata complex consists of bimodal (but mostly felsic) volcanic and volcanoclastic rocks, muscovite+/-graphite schists, quartzites, and marble with local occurrences of banded-iron-formation. The Sao Caetano complex mainly consists of metagreywackes, marbles, calc-silicate rocks, and rare meta-mafic rocks. Meta-mafic rocks from both complexes have geochemical signatures similar to those of continental flood basalts, with epsilon Nd (1.0 Ga) values ranging from -1.0 to -2.8. Felsic volcanic rocks from the Riacho Gravata complex show epsilon Nd (1.0 Ga) values ranging from -1.0 to -7.4 and geochemical signatures similar to A(2)-type granitoids. New SHRIMP U-Pb zircon data from felsic volcanic rocks within the Riacho Gravata complex yielded ages of 1091 +/- 13 Ma and 996 +/- 13 Ma. In contrast, meta-graywackes from the Sao Caetano complex show a maximum deposition age of ca. 806 Ma in the northern part and ca. 862 Ma in the southern part of the outcrop area. The orthogneisses show epsilon Nd (1.0 Ga) values ranging from 1.0 to -4.2 with U/Pb TIMS and SHRIMP ages ranging from 960 to 926 Ma and geochemical signatures of A(2)-type granitoids. The data reported in this paper suggest at least two periods of extension within the Central Domain of the Borborema Province, the first starts ca. 1091 Ma with magmatism and deposition, creating the Riacho Gravata basin and continued intrusion of A-type granites to 920 Ma. A second rift event, which reactivated old faults, generated a basin with a maximum deposition age of ca. 806 Ma. Furthermore, the oldest granitoids cutting these metasedimentary rocks have crystallization ages of ca. 600 Ma. This suggests that the second rift event could be early Brasiliano in age. The resulting Sao Caetano basin received detritus from a variety of sources, although detritus from the Riacho Gravata complex dominated. Deposition ages of the Riacho Gravata and the Sao Caetano complexes are coeval with deposits in other basins of the Borborema Province (Riacho do Tigre in the Central Domain; Macurure and Maranco in the Sergipano Belt of the Southern domain). The Macaubas Group from SE Brazil and its counterparts in Africa, the Zadanian and Mayumbian Groups, in the western edge of the Congo Craton are also coeval. Closure of the Riacho Gravata and Sao Caetano basins occurred during the Brasiliano convergence (705-600 Ma). During the last stage of convergence, ca. 612 Ma, pull-apart basins were created and filled; final basin closure took place 605-592 Ma, after deposition ceased. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.
Resumo:
Abstract Background RNAs transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression. However, the complement of human genes in which introns are transcribed, and the number of intronic transcriptional units and their tissue expression patterns are not known. Results A survey of mRNA and EST public databases revealed more than 55,000 totally intronic noncoding (TIN) RNAs transcribed from the introns of 74% of all unique RefSeq genes. Guided by this information, we designed an oligoarray platform containing sense and antisense probes for each of 7,135 randomly selected TIN transcripts plus the corresponding protein-coding genes. We identified exonic and intronic tissue-specific expression signatures for human liver, prostate and kidney. The most highly expressed antisense TIN RNAs were transcribed from introns of protein-coding genes significantly enriched (p = 0.002 to 0.022) in the 'Regulation of transcription' Gene Ontology category. RNA polymerase II inhibition resulted in increased expression of a fraction of intronic RNAs in cell cultures, suggesting that other RNA polymerases may be involved in their biosynthesis. Members of a subset of intronic and protein-coding signatures transcribed from the same genomic loci have correlated expression patterns, suggesting that intronic RNAs regulate the abundance or the pattern of exon usage in protein-coding messages. Conclusion We have identified diverse intronic RNA expression patterns, pointing to distinct regulatory roles. This gene-oriented approach, using a combined intron-exon oligoarray, should permit further comparative analysis of intronic transcription under various physiological and pathological conditions, thus advancing current knowledge about the biological functions of these noncoding RNAs.
Resumo:
Abstract Background Heavy metal Resistance-Nodulation-Division (HME-RND) efflux systems help Gram-negative bacteria to keep the intracellular homeostasis under high metal concentrations. These proteins constitute the cytoplasmic membrane channel of the tripartite RND transport systems. Caulobacter crescentus NA1000 possess two HME-RND proteins, and the aim of this work was to determine their involvement in the response to cadmium, zinc, cobalt and nickel, and to analyze the phylogenetic distribution and characteristic signatures of orthologs of these two proteins. Results Expression assays of the czrCBA operon showed significant induction in the presence of cadmium and zinc, and moderate induction by cobalt and nickel. The nczCBA operon is highly induced in the presence of nickel and cobalt, moderately induced by zinc and not induced by cadmium. Analysis of the resistance phenotype of mutant strains showed that the ΔczrA strain is highly sensitive to cadmium, zinc and cobalt, but resistant to nickel. The ΔnczA strain and the double mutant strain showed reduced growth in the presence of all metals tested. Phylogenetic analysis of the C. crescentus HME-RND proteins showed that CzrA-like proteins, in contrast to those similar to NczA, are almost exclusively found in the Alphaproteobacteria group, and the characteristic protein signatures of each group were highlighted. Conclusions The czrCBA efflux system is involved mainly in response to cadmium and zinc with a secondary role in response to cobalt. The nczCBA efflux system is involved mainly in response to nickel and cobalt, with a secondary role in response to cadmium and zinc. CzrA belongs to the HME2 subfamily, which is almost exclusively found in the Alphaproteobacteria group, as shown by phylogenetic analysis. NczA belongs to the HME1 subfamily which is more widespread among diverse Proteobacteria groups. Each of these subfamilies present distinctive amino acid signatures.
Resumo:
Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is known by its aggressiveness and lack of effective therapeutic options. Thus, improvement in current knowledge of molecular changes associated with pancreatic cancer is urgently needed to explore novel venues of diagnostics and treatment of this dismal disease. While there is mounting evidence that long noncoding RNAs (lncRNAs) transcribed from intronic and intergenic regions of the human genome may play different roles in the regulation of gene expression in normal and cancer cells, their expression pattern and biological relevance in pancreatic cancer is currently unknown. In the present work we investigated the relative abundance of a collection of lncRNAs in patients' pancreatic tissue samples aiming at identifying gene expression profiles correlated to pancreatic cancer and metastasis. Methods Custom 3,355-element spotted cDNA microarray interrogating protein-coding genes and putative lncRNA were used to obtain expression profiles from 38 clinical samples of tumor and non-tumor pancreatic tissues. Bioinformatics analyses were performed to characterize structure and conservation of lncRNAs expressed in pancreatic tissues, as well as to identify expression signatures correlated to tissue histology. Strand-specific reverse transcription followed by PCR and qRT-PCR were employed to determine strandedness of lncRNAs and to validate microarray results, respectively. Results We show that subsets of intronic/intergenic lncRNAs are expressed across tumor and non-tumor pancreatic tissue samples. Enrichment of promoter-associated chromatin marks and over-representation of conserved DNA elements and stable secondary structure predictions suggest that these transcripts are generated from independent transcriptional units and that at least a fraction is under evolutionary selection, and thus potentially functional. Statistically significant expression signatures comprising protein-coding mRNAs and lncRNAs that correlate to PDAC or to pancreatic cancer metastasis were identified. Interestingly, loci harboring intronic lncRNAs differentially expressed in PDAC metastases were enriched in genes associated to the MAPK pathway. Orientation-specific RT-PCR documented that intronic transcripts are expressed in sense, antisense or both orientations relative to protein-coding mRNAs. Differential expression of a subset of intronic lncRNAs (PPP3CB, MAP3K14 and DAPK1 loci) in metastatic samples was confirmed by Real-Time PCR. Conclusion Our findings reveal sets of intronic lncRNAs expressed in pancreatic tissues whose abundance is correlated to PDAC or metastasis, thus pointing to the potential relevance of this class of transcripts in biological processes related to malignant transformation and metastasis in pancreatic cancer.
Resumo:
When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.
Resumo:
Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variab ility behavior is mandatory for obtaining an unbi ased statistical view on th eir controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-si nusoidal signatures. Th e variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspect s indicate a compatibility with stellar rotation, although more inform ation is needed to confirm their root- causes. Considering this possi bility, we identified a subset of th ree Sun-like candidates by their photometric peri od. Finally, the variability period versus color diagr am behavior was found to be highly depe ndent on the reddening correction.
Resumo:
This paper presents the results of research aiming to develop partial discharge detection techniques in high voltage equipment, at substation environment. Measurements of high frequency components of leakage current, at equipments' grounding conductor, were performed. This procedure was performed with the equipment energized and without disconnecting it from the system. The partial discharge generated current pulse is picked up by a high frequency CT, and is detected by an oscilloscope. The partial discharge identification was made considering previously obtained laboratory results, where partial discharges were characterized by means of its time domain signatures. This paper focuses measurements in SF6 circuit breakers. Encouraging results were obtained, showing the feasibility of detecting partial discharges in energized equipment in the laboratory and in the field, in a substation environment, using this method.
Resumo:
Abstract Background Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics. Results The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis. Conclusions These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.