936 resultados para Signalisation AKT
Resumo:
La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.
Resumo:
En la búsqueda de preservar el medio ambiente y estandarizar la disposición final de los residuos generados, Sustain Cycle nace como un gestor de residuos de aceite vegetal usado, reforzando la carente oferta del mercado. Fortaleciendo el compromiso de los generadores de este residuo además de una reducción de costos, la creación de Sustain Cycle se desarrolla bajo la figura jurídica de Fundación, deduciendo en los contribuyentes del impuesto el valor de las donaciones efectuadas. El aporte ambiental se basa en minimizar el riesgo de una mala disposición en la red de alcantarillado y su componente social se enfoca en evitar la reutilización ilegal y perjudicial para el consumidor. Sustain Cycle se centra en la recolección, acopio, filtrado y comercialización del AVU generado por todos los establecimientos comerciales que produzcan alimentos como papas a la francesa, empanadas, buñuelos, churros, plátanos y demás productos que requieran del aceite para su cocción.
Resumo:
The N-terminal fragment of pro-opiomelancortin (POMC) has been shown previously to act as an adrenal mitogen. However, little is known about the molecular mechanisms by which mitogenesis is stimulated, although it has been shown that N-POMC1-28 Stimulates the ERK pathway in human H295R cells. We have investigated signaling stimulated by N-POMC1-28 and N-POMC1-49 in the mouse Y1 cell line and found that both peptides stimulate ERK phosphorylation with maximal stimulation being achieved within 5 min. Similar results were observed for both MEK and c-Raf phosphorylation, although N-POMC1-49 stimulated the phosphorylation of Akt more robustly than N-POMC1-28. We also investigated the expression of tyrosine kinase receptors in adrenal cells. PCR utilizing degenerate primers was performed on cDNA from both Y1 cells and rat adrenal tissue. Sequencing of 114 clones from each cDNA population revealed the expression of a number of receptors, several of which have not been described previously in the adrenal. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The neuroprotective effects of flavonoids will ultimately depend on their interaction with both neuronal and glial cells. in this study, we show that the potential neurotoxic effects of quercetin are modified by glial cell interactions. Specifically, quercetin is rapidly conjugated to glutathione within glial cells to yield 2 '-glutathionyl-quercetin, which is exported from cells but has significantly reduced neurotoxicity. In addion, quercetin underwent intracellular O-methylation to yield 3 '-O-methyl-quercetin and 4 '-O-methyl-quercetin, although these were not exported from glia at the same rate as the glutathionyl adduct. The neurotoxic potential of both quercetin and 2 '-glutathionyl-quercetin paralleled their ability to modulate the pro-survival Akt/PKB and extracellular signal-regulated kinase (ERK) signalling pathways. These data were supported by co-culture investigation, where the neurotoxic effects of quercetin were significantly reduced when they were cultured alongside glial cells. We propose that glial cells act to protect neurons against the neurotoxic effects of quercetin and that 2 '-glutathionyl-quercetin represents a novel quercetin metabolite. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Evidence Suggests that a group of phytochemicals known as flavonoids are highly effective in reversing age-related declines in neuro-cognitive performance through their ability to interact with the cellular and molecular architecture of the brain responsible for memory and by reducing neuronal loss due to neurodegenerative Processes. In particular, they may increase the number of, and strength of, connections between neurons, via their specific interactions with the ERK and Akt signalling pathways, leading to an increase in neurotrophins Such as BDNF. Concurrently, their effects on the peripheral and Cerebral vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Finally, they have also been shown to reduce neuronal damage and losses induced by various neurotoxic species and neuroinflammation. Together, these processes act to maintain the number and quality of synaptic connections in the brain. a factor known to be essential for efficient LTP, synaptic plasticity and ultimately the efficient working of memory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The neuroprotective actions of dietary flavonoids involve a number of effects within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. This multiplicity of effects appears to be underpinned by two processes. Firstly, they interact with important neuronal signalling cascades leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and differentiation. These interactions include selective actions on a number of protein kinase and lipid kinase signalling cascades, most notably the PI3K/Akt and MAP kinase pathways which regulate pro-survival transcription factors and gene expression. Secondly, they induce peripheral and cerebral vascular blood flow in a manner which may lead to the induction of angiogenesis, and new nerve cell growth in the hippocampus. Therefore, the consumption of flavonoid-rich foods, such as berries and cocoa, throughout life holds a potential to limit the neurodegeneration associated with a variety of neurological disorders and to prevent or reverse normal or abnormal deteriorations in cognitive performance.
Resumo:
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory acquisition, consolidation, storage and retrieval. These low molecular weight polyphenols are widespread in the human diet, are absorbed to only a limited degree and localise in the brain at low concentration. However, they have been found to be highly effective in reversing age-related declines in memory via their ability to interact with the cellular and molecular architecture of the brain responsible for memory. These interactions include an ability to activate signalling pathways, critical in controlling synaptic plasticity, and a potential to induce vascular effects capable of causing new nerve cell growth in the hippocampus. Their ability to activate the extracellular signal-regulated kinase (ERK1/2) and the protein kinase B (PKB/Akt) signalling pathways, leading to the activation of the cAMP response element-binding protein (CREB), a transcription factor responsible for increasing the expression of a number of neurotrophins important in de. ning memory, will be discussed. How these effects lead to improvements in memory through induction of synapse growth and connectivity, increases in dendritic spine density and the functional integration of old and new neurons will be illustrated. The overall goal of this critical review is to emphasize future areas of investigation as well as to highlight these dietary agents as promising candidates for the design of memory-enhancing drugs with relevance to normal and pathological brain ageing (161 references).
Resumo:
Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.
Resumo:
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca2+ homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system.
Resumo:
Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 mu mol/L) (-)epicatechin was inhibitory. (-)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell-shaped concentration-response characteristics. The human metabolite 3 '-O-methyl-(-)epicatechin was as effective as (-)epicatechin at stimulating ERK phosphorylation, but (-)epicatechin glucuronide was inactive. (-)Epicatechin and 3 '-O-methyl-(-)epicatechin treatments (100 nmol/L) increased CRE-luciferase activity in cortical neurons in a partially ERK-dependent manner, suggesting the potential to increase CREB-mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (-)epicatechin and this translated into an increase in GluR2 protein. Thus, (-)epicatechin has the potential to increase CREB-regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.
Resumo:
Studies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to investigate the potential of quercetin and two of its "in vivo" metabolites, 3'-O-methyl quercetin and 4'-O-methyl quercetin, to protect H9c2 cardiomyoblasts against H2O2-induced oxidative stress. As limited data are available regarding the potential uptake and cellular effects of quercetin and its metabolites in cardiac cells, we have evaluated the cellular association/uptake of the three compounds and their involvement in the modulation of two pro-survival signalling pathways: ERK1/2 signalling cascade and PI3K/Akt pathway. The three flavonols associated with cells to differing extents. Quercetin and its two O-methylated metabolites were able to reduce intracellular ROS production but only quercetin was able to counteract H2O2 cell damage, as measured by MTT reduction assay, caspase-3 activity and DNA fragmentation assays. Furthermore, only quercetin was observed to modulate pro-survival signalling through ERK1/2 and PI3K/Akt pathway. In conclusion we have demonstrated that quercetin, but not its O-methylated metabolites, exerts protective effects against H2O2 cardiotoxicity and that the mechanism of its action involves the modulation of PI3K/Akt and ERK1/2 signalling pathways. (c) 2006 Elsevier Masson SAS. All rights reserved.
Resumo:
Phytochemical-rich foods have been shown to be effective at reversing age-related deficits in memory in both animals and humans. We show that a supplementation with a blueberry diet (2% w/w) for 12 weeks improves the performance of aged animals in spatial working memory tasks. This improvement emerged within 3 weeks and persisted for the remainder of the testing period. Memory performance correlated well with the activation of cAMP-response element-binding protein (CREB) and increases in both pro- and mature levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in CREB and BDNF in aged and blueberry-supplemented animals were accompanied by increases in the phosphorylation state of extracellular signal-related kinase (ERK1/2), rather than that of calcium calmodulin kinase (CaMKII and CaMKIV) or protein kinase A. Furthermore, age and blueberry supplementation were linked to changes in the activation state of Akt, mTOR, and the levels of Arc/Arg3.1 in the hippocampus, suggesting that pathways involved in de novo protein synthesis may be involved. Although causal relationships cannot be made among supplementation, behavior, and biochemical parameters, the measurement of anthocyanins and flavanols in the brain following blueberry supplementation may indicate that changes in spatial working memory in aged animals are linked to the effects of flavonoids on the ERK-CREB-BDNF pathway. (c) 2008 Elsevier Inc. All Fights reserved.
Resumo:
Inhibition of glycogen synthase kinase 3β (GSK3β) as a consequence of its phosphorylation by protein kinase B/Akt (PKB/Akt) has been implicated in cardiac myocyte hypertrophy in response to endothelin-1 or phenylephrine. We examined the regulation of GSK3α (which we show to constitute a significant proportion of the myocyte GSK3 pool) and GSK3β in cardiac myocytes. Although endothelin increases phosphorylation of GSK3 and decreases its activity, the response is less than that induced by insulin (which does not promote cardiac myocyte hypertrophy). GSK3 phosphorylation induced by endothelin requires signalling through the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and not the PKB/Akt pathway, whereas the reverse is true for insulin. Cardiac myocyte hypertrophy involves changes in morphology, and in gene and protein expression. The potent GSK3 inhibitor 1-azakenpaullone increases myocyte area as a consequence of increased cell length whereas phenylephrine increases both length and width. Azakenpaullone or insulin promotes AP1 transcription factor binding to an AP1 consensus oligonucleotide, but this was significantly less than that induced by endothelin and derived principally from increased binding of JunB protein, the expression of which was increased. Azakenpaullone promotes significant changes in gene expression (assessed by Affymetrix microarrays), but the overall response is less than with endothelin and there is little overlap between the genes identified. Thus, although GSK3 may contribute to cardiac myocyte hypertrophy in some respects (and presumably plays an important role in myocyte metabolism), it does not appear to contribute as significantly to the response induced by endothelin as has been maintained.