943 resultados para Sewage and anaerobic reactor effluent


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of electron beam irradiation, anaerobic packaging, and storage times on the aroma of raw ground beef patties were investigated. Patties were coarse ground at three days postmortem, and then fine ground and packaged at three, six, and nine days postmortem. Patties were irradiated immediately after packaging, or three days after packaging at 2 kGy, and then stored at 2.5 °C ñ1.5 °C for four days. Non-irradiated controls were held under similar conditions. After four days of storage for each postmortem time (three, six, and nine days), sensory aroma evaluations were performed on all samples. Irradiated and non-irradiated patties with the shortest postmortem storage times had the most desirable aroma scores. Controls had significantly (p £ .05) more desirable aroma scores than irradiated patties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anaerobic methane-oxidizing microbial communities in sediments at cold methane seeps are important factors in controlling methane emission to the ocean and atmosphere. Here, we investigated the distribution and carbon isotopic signature of specific biomarkers derived from anaerobic methanotrophic archaea (ANME groups) and sulphate-reducing bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) at different cold seep provinces of Hydrate Ridge, Cascadia margin. The special focus was on their relation to in situ cell abundances and methane turnover. In general, maxima in biomarker abundances and minima in carbon isotope signatures correlated with maxima in AOM and sulphate reduction as well as with consortium biomass. We found ANME-2a/DSS aggregates associated with high abundances of sn-2,3-di-O-isoprenoidal glycerol ethers (archaeol, sn-2-hydroxyarchaeol) and specific bacterial fatty acids (C16:1omega5c, cyC17:0omega5,6) as well as with high methane fluxes (Beggiatoa site). The low to medium flux site (Calyptogena field) was dominated by ANME-2c/DSS aggregates and contained less of both compound classes but more of AOM-related glycerol dialkyl glycerol tetraethers (GDGTs). ANME-1 archaea dominated deeper sediment horizons at the Calyptogena field where sn-1,2-di-O-alkyl glycerol ethers (DAGEs), archaeol, methyl-branched fatty acids (ai-C15:0, i-C16:0, ai-C17:0), and diagnostic GDGTs were prevailing. AOM-specific bacterial and archaeal biomarkers in these sediment strata generally revealed very similar d13C-values of around -100 per mill. In ANME-2-dominated sediment sections, archaeal biomarkers were even more 13C-depleted (down to -120 per mill), whereas bacterial biomarkers were found to be likewise 13C-depleted as in ANME-1-dominated sediment layers (d13C: -100 per mill). The zero flux site (Acharax field), containing only a few numbers of ANME-2/DSS aggregates, however, provided no specific biomarker pattern. Deeper sediment sections (below 20 cm sediment depth) from Beggiatoa covered areas which included solid layers of methane gas hydrates contained ANME-2/DSS typical biomarkers showing subsurface peaks combined with negative shifts in carbon isotopic compositions. The maxima were detected just above the hydrate layers, indicating that methane stored in the hydrates may be available for the microbial community. The observed variations in biomarker abundances and 13C-depletions are indicative of multiple environmental and physiological factors selecting for different AOM consortia (ANME-2a/DSS, ANME-2c/DSS, ANME-1) along horizontal and vertical gradients of cold seep settings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). In sediment samples from Hydrate Ridge, the Isis Mud Volcano and the Gulf of Mexico, DSS cells accounted for 3-6% of all DAPI-stained single cells. Out of these, 8-17% were labelled with probe SEEP1a-1441. This translated into relative abundances of single SEEP-SRB1a cells of 0.3% to 0.7%. Contrastingly, in a sediment sample from the Gullfaks oil field, DSS cells accounted for 18% and SEEP-SRB1a for 9% of all single cells. This sediment sample also featured an unusually high abundance of single ANME-2 cells and only very few ANME-2/DSS aggregates in comparison with other AOM habitats. Considering also the nature of the sample, it is likely that the high number of single ANME-2 and SEEP-SRB1a cells were an artifact of sample preparation. Here, harsher sonication was required to remove the microorganisms from coarse sand prior to CARD-FISH analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most advance designs for HiPER fusion reactor is a spherical chamber 10 m in diameter based on dry wall concept. In this system, the first wall will have to withstand short energy pulses of 5 to 20 MJ at a repetition rate of 0.5-10 Hz mostly in form of X-rays and charged particles. To avoid melting of the inner surface, the first wall consists on a thin armor attached to the structural material. Thickness (th) and material of each layer have to be chosen to assure the proper functioning of the facility during its planned lifetime.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En este trabajo se llevó a cabo el tratamiento de vinazas mediante dos tecnologías anaerobias. Se dividió en cuatro estudios técnicos. El primero fue el arranque y estabilización del reactor UASB (Upflow Anaerobic Sludge Blanket), en dónde se evaluó la estabilización mediante la eficiencia de remoción de DQO y la granulación del lodo. El segundo estudio evaluó el rendimiento del reactor UASB frente a diferentes Cva. El tercer estudio evaluó el efecto del TRH sobre la eficiencia del reactor UASB, y el cuarto de ellos fue evaluar el rendimiento del RABF (Reactor Anaerobio de Biomasa Fija). El reactor UASB de 2,6 L de capacidad, fue arrancado por lotes, con seis ensayos utilizando vinaza como sustrato. Se obtuvieron eficiencias de remoción en DQO en un rango de 79-91%, en los seis lotes. Se obtuvo formación de gránulos con diámetro (Ø) de 0,85-1,15 mm y un coeficiente de esfericidad (Є) de 0,7-0,77. Se logró la granulación de lodos tras 2 meses de operación. Alcanzada la estabilización del reactor UASB, se siguió una operación en flujo continuo. Las Cva probadas de 1, 2, 4 y 6 gDQO/L.d para el reactor UASB dan una respuesta bastante favorable con respecto al rendimiento del reactor, ya que presento eficiencias de remoción de DQOs del 51 hasta el 76%, eficiencias similares a los reportados por la literatura. En el estudio de TRH se operó con Cva de 6 gDQO/L.d y los TRH fueron de 24, 12 ,5 ,3 y 1 día. El % de eliminación de DQO fue de 51, 60, 57, 60 y 63 % remoción en DQOsoluble, respectivamente. Se alcanzó una producción de biogás máximo de 5.283 ml/d, pero al reducir el TRH se observó una reducción proporcional del volumen total de biogás. El %CH4 contenido en el biogás aumento al disminuir el TRH, reflejando valores de 80 al 92 % de CH4. El RABF con un volumen de 8,2 L, utilizo tubos de plástico corrugado como medio de soporte para las bacterias. Se aplicaron las siguientes Cva; 0,5, 1, 3 y 6 gDQO/L.d. El reactor RABF presento una excelente remoción de la materia orgánica (80% DQOs), una producción de biogás estable, y un contenido en CH4 del biogás muy interesante. Sin embargo, para una Cva superior a 3 gDQO/L.d empezó un comportamiento inesperado de reducción de capacidad. Las condiciones hidrodinámicas del reactor UASB son decisivas para la formación de los gránulos, condición previa para iniciar el flujo continuo. Al operar el reactor UASB en modo continuo, se pudo evaluar las mejores condiciones de operación para este tipo de residuo (vinaza). La Cva de 6 gDQO/L.d para el reactor UASB alimentado con vinaza bruta representa el límite de su capacidad. Sin embargo, al aumentar la Cva se genera una mayor producción de biogás y metano. La eficiencia de remoción de la DQO soluble es independiente del TRH, para una Cva de 6 g DQO/L•d y las condiciones de TRH probadas (24, 12, 5, 3 y 1 días). Los valores de remoción de DQO alcanzados son un poco superior a los valores de biodegradabilidad anaerobia de la vinaza observados de 50 %. De manera general, la reducción del TRH o bien la dilución de la vinaza no presenta un efecto significativo sobre la remoción de la materia orgánica soluble, pero si lo presenta en la remoción de sulfatos reduciendo indirectamente su toxicidad. El soporte termoplástico inoculado en el RABF y alimentado con vinaza bruta, actuó como un filtro, además de obtener buenos resultados en eliminación de DQO, pero dada las dimensiones y la altura del relleno se frena la evacuación del metano. This work was carried out by treatment vinasses with two anaerobic technologies. It was divided into four technical studies. The first was the start up and stabilization Upflow Anaerobic Sludge Blanket (UASB) reactor, where the stability was evaluated by the removal efficiency of COD and sludge granulation. The second study evaluated the performance of the UASB reactor against different OLR. The third study evaluated the effect of HRT on the efficiency of the UASB reactor, and the fourth of which was evaluate the performance Fixed Biomass Anaerobic (FBA) reactor. The UASB reactor of 2,6 L capacity, was started in batch, with six assays using vinasse as substrate. Were obtained removal efficiencies of COD in the range of 79- 91% in the six batches. Forming granules were obtained with a diameter (Ø) of 0,85- 1,15 mm and sphericity coefficient (Є) of 0,7 to 0,77. Sludge granulation was achieved after 2 months of operation. Once stabilization is achieved of the UASB reactor, it was followed by a continuous flow operation. The OLR tested 1, 2, 4 and 6 gCOD/L.d for UASB reactor gives a very favorable response regarding the performance of the reactor, as presented COD5 removal efficiencies of 51 to 76%, similar efficiencies those reported in the literature The HRT study was operated with an OLR of 6 gCOD/L.d and HRT were 24, 12, 5, 3 and 1 day. The removal efficiency was 51, 60, 57, 60 and 63% in soluble COD, respectively. It reached a maximum biogas production of 5.283 ml / d, but by reducing the HRT showed a proportional reduction in the total volume of biogas. The %CH4 content in the biogas increased with decreasing TRH, reflecting values of 80 to 92% of CH4. The FBA reactor with a volume of 8,2 L, used corrugated plastic tubes as carrier for bacteria transportation. The following OLR was applied, 0,5, 1, 3 and 6 gCOD/L.d. The FBA reactor showed an excellent removal of organic matter (80% CODS), a stable biogas production, and CH4 content very interesting. However, for more than 3 gCOD/L.d OLR began with unexpected behavior of capacity reduction. The UASB reactor hydrodynamic conditions are decisive for the formation of the granules, precondition to start the continuous flow. By operating the UASB reactor in continuous mode, it was possible to evaluate the best operating conditions for this type of waste (vinasse). The OLR of 6 gCOD/L.d for the UASB reactor fed with raw vinasse represents the limit of its capacity. However, with increasing OLR creates increased biogas production and methane. The removal efficiency of soluble COD is independent of HRT for OLR of 6 gCOD/L.d and HRT conditions tested (24, 12, 5, 3 and 1 day). COD Removal values achieved are slightly higher than the values of the vinasse anaerobic biodegradability of observed at 50%. Generally, reduction of HRT or vinasse dilution does not present a significant effect on the removal of the soluble organic matter; however if it occurs in the removal of sulfate reducing indirectly its toxicity. The thermoplastic support inoculated in FBA reactor and fed with raw vinasse, acted as a filter, in addition to obtaining good results in COD removal, but given the size and height of the filling slows evacuation of methane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the frame of the HiPER reactor, we propose and study a Self Cooled Lead Lithium blanket with two different cooling arrangements of the system First Wall – Blanket for the HiPER reactor: Integrated First Wall Blanket and Separated First Wall Blanket. We compare the two arrangements in terms of power cycle efficiency, operation flexibility in out-off-normal situations and proper cooling and acceptable corrosion. The Separated First Wall Blanket arrangement is superior in all of them, and it is selected as the advantageous proposal for the HiPER reactor blanket. However, it still has to be improved from the standpoint of proper cooling and corrosion rates

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutronics and activation of the preliminary reacion chamber of HiPER reactor based in a SCLL blanket

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gasification is a technology that can replace traditional management alternatives used up to date to deal with this waste (landfilling, composting and incineration) and which fulfils the social, environmental and legislative requirements. The main products of sewage sludge gasification are permanent gases (useful to generate energy or to be used as raw material in chemical synthesis processes), liquids (tars) and char. One of the main problems to be solved in gasification is tar production. Tars are organic impurities which can condense at relatively high temperatures making impossible to use the produced gases for most applications. This work deals with the effect of some primary tar removal processes (performed inside the gasifier) on sewage sludge gasification products. For this purpose, analysis of the gas composition, tar production, cold gas efficiency and carbon conversion were carried out. The tests were performed with air in a laboratory scale plant consisting mainly of a bubbling bed gasifier. No catalyzed and catalyzed (10% wt of dolomite in the bed and in the feeding) tests were carried out at different temperatures (750ºC, 800ºC and 850ºC) in order to know the effect of these parameters in the gasification products. As far as tars were concerned, qualitative and quantitative tar composition was determined. In all tests the Equivalence Ratio (ER) was kept at 0.3. Temperature is one of the most influential variables in sewage sludge gasification. Higher temperatures favoured hydrogen and CO production while CO2 content decreased, which might be partially explained by the effect of the cracking, Boudouard and CO2 reforming reactions. At 850ºC, cold gas efficiency and carbon conversion reached 49% and 76%, respectively. The presence of dolomite as catalyst increased the production of H2 reaching contents of 15.5% by volume at 850 °C. Similar behaviour was found for CO whereas CO2 and CnHm (light hydrocarbons) production decreased. In the presence of dolomite, a tar reduction of up to 51% was reached in comparison with no catalyzed tests, as well as improvements on cold gas efficiency and carbon conversion. Several assays were developed in order to test catalyst performance under more rough gasification conditions. For this purpose, the throughput value (TR), defined as kg sludge “as received” fed to the gasifier per hour and per m2 of cross sectional area of the gasifier, was modified. Specifically, the TR values used were 110 (reference value), 215 and 322 kg/h·m2. When TR increased, the H2, CO and CH4 production decreased while the CO2 and the CnHm production increased. Tar production increased drastically with TR during no catalysed tests what is related to the lower residence time of the gas inside the reactor. Nevertheless, even at TR=322 kg/h·m2, tar production decreased by nearly 50% with in-bed use of dolomite in comparison with no catalyzed assays under the same operating conditions. Regarding relative tar composition, there was an increase in benzene and naphthalene content when temperature increased while the content of the rest of compounds decreased. The dolomite seemed to be effective all over the range of molecular weight studied showing tar removal efficiencies between 35-55% in most cases. High values of the TR caused a significant increase in tar production but a slight effect on tar composition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.