982 resultados para Sequential Gaussian simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and numerical studies of slurry generation using a cooling slope are presented in the paper. The slope having stainless steel body has been designed and constructed to produce semisolid A356 Al alloy slurry. The pouring temperature of molten metal, slope angle of the cooling slope and slope wall temperature were varied during the experiment. A multiphase numerical model, considering liquid metal and air, has been developed to simulate the liquid metal flow along the cooling channel using an Eulerian two-phase flow approach. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling channel following Schiel's equation. The continuity, momentum and energy equations are solved considering thin wall boundary condition approach. During solidification of the melt, based on the liquid fraction and latent heat of the alloy, temperature of the alloy is modified continuously by introducing a modified temperature recovery method. Numerical simulations has been carried out for semisolid slurry formation by varying the process parameters such as angle of the cooling slope, cooling slope wall temperature and melt superheat temperature, to understand the effect of process variables on cooling slope semisolid slurry generation process such as temperature distribution, velocity distribution and solid fraction of the solidifying melt. Experimental validation performed for some chosen cases reveals good agreement with the numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unambiguous evidence for the engagement of CF3 group in N-H center dot center dot center dot F-C hydrogen bond in a low polarity solvent, the first observation of its kind, is reported. The presence of such weak molecular interactions in the solution state is convincingly established by one and two-dimensional H-1, F-19, and natural abundant N-15 NMR spectroscopic studies. The strong and direct evidence is derived by the observation of through-space couplings, such as, (1h)J(FH), (1h)J(FN), and (2h)J(FF), where the spin polarization is transmitted through hydrogen bond. In an interesting example of a molecule containing two CF3 groups getting simultaneously involved in hydrogen bond, where hydrogen bond mediated couplings are not reflected in the NMR spectrum, F-19-F-19 NOESY experiment yielded confirmatory evidence. Significant deviations in the strengths of (1)J(NH), variable temperature, and the solvent induced perturbations yielded additional support. The NMR results are corroborated by both DFT calculations and MD simulations, where the quantitative information on different ways of involvement of fluorine in two and three centered hydrogen bonds, their percentage of occurrences, and geometries have been obtained. The hydrogen bond interaction energies have also been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to compu- tational biology or computer vision and have been tackled using algorithms, referred to as structured output learning algorithms. We consider the problem of structured classifi- cation. In the last few years, large margin classifiers like sup-port vector machines (SVMs) have shown much promise for structured output learning. The related optimization prob -lem is a convex quadratic program (QP) with a large num-ber of constraints, which makes the problem intractable for large data sets. This paper proposes a fast sequential dual method (SDM) for structural SVMs. The method makes re-peated passes over the training set and optimizes the dual variables associated with one example at a time. The use of additional heuristics makes the proposed method more efficient. We present an extensive empirical evaluation of the proposed method on several sequence learning problems.Our experiments on large data sets demonstrate that the proposed method is an order of magnitude faster than state of the art methods like cutting-plane method and stochastic gradient descent method (SGD). Further, SDM reaches steady state generalization performance faster than the SGD method. The proposed SDM is thus a useful alternative for large scale structured output learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers sequential hypothesis testing in a decentralized framework. We start with two simple decentralized sequential hypothesis testing algorithms. One of which is later proved to be asymptotically Bayes optimal. We also consider composite versions of decentralized sequential hypothesis testing. A novel nonparametric version for decentralized sequential hypothesis testing using universal source coding theory is developed. Finally we design a simple decentralized multihypothesis sequential detection algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein introducing appropriate rotation between the constellations of the two users is shown to maximally enlarge the CC capacity region. Such a Non-Orthogonal Multiple Access (NO-MA) method of enlarging the CC capacity region is referred to as Constellation Rotation (CR) scheme. In this paper, we propose a novel NO-MA technique called Constellation Power Allocation (CPA) scheme to enlarge the CC capacity region of two-user GMAC. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced ML decoding complexity for some QAM constellations. For the CR scheme, code pairs approaching the CC sum capacity are known only for the class of PSK and PAM constellations but not for QAM constellations. In this paper, we design code pairs with the CPA scheme to approach the CC sum capacity for 16-QAM constellations. Further, the CPA scheme used for two-user GMAC with random phase offsets is shown to provide larger CC sum capacities at high SNR values compared to the CR scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Gaussian Mixture Models (GMM) have been one of the most popular and successful approaches to perform foreground segmentation on multimodal background scenes. However, the good accuracy of the GMM algorithm comes at a high computational cost. An improved GMM technique was proposed by Zivkovic to reduce computational cost by minimizing the number of modes adaptively. In this paper, we propose a modification to his adaptive GMM algorithm that further reduces execution time by replacing expensive floating point computations with low cost integer operations. To maintain accuracy, we derive a heuristic that computes periodic floating point updates for the GMM weight parameter using the value of an integer counter. Experiments show speedups in the range of 1.33 - 1.44 on standard video datasets where a large fraction of pixels are multimodal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work derives inner and outer bounds on the generalized degrees of freedom (GDOF) of the K-user symmetric MIMO Gaussian interference channel. For the inner bound, an achievable GDOF is derived by employing a combination of treating interference as noise, zero-forcing at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, depending on the number of antennas and the INR/SNR level. An outer bound on the GDOF is derived, using a combination of the notion of cooperation and providing side information to the receivers. Several interesting conclusions are drawn from the bounds. For example, in terms of the achievable GDOF in the weak interference regime, when the number of transmit antennas (M) is equal to the number of receive antennas (N), treating interference as noise performs the same as the HK scheme and is GDOF optimal. For K >; N/M+1, a combination of the HK and IA schemes performs the best among the schemes considered. However, for N/M <; K ≤ N/M+1, the HK scheme is found to be GDOF optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the achievable rate region of Gaussian multiple access channels (MAC) with finite input alphabet and quantized output. With finite input alphabet and an unquantized receiver, the two-user Gaussian MAC rate region was studied. In most high throughput communication systems based on digital signal processing, the analog received signal is quantized using a low precision quantizer. In this paper, we first derive the expressions for the achievable rate region of a two-user Gaussian MAC with finite input alphabet and quantized output. We show that, with finite input alphabet, the achievable rate region with the commonly used uniform receiver quantizer has a significant loss in the rate region compared. It is observed that this degradation is due to the fact that the received analog signal is densely distributed around the origin, and is therefore not efficiently quantized with a uniform quantizer which has equally spaced quantization intervals. It is also observed that the density of the received analog signal around the origin increases with increasing number of users. Hence, the loss in the achievable rate region due to uniform receiver quantization is expected to increase with increasing number of users. We, therefore, propose a novel non-uniform quantizer with finely spaced quantization intervals near the origin. For a two-user Gaussian MAC with a given finite input alphabet and low precision receiver quantization, we show that the proposed non-uniform quantizer has a significantly larger rate region compared to what is achieved with a uniform quantizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.