970 resultados para Separate Continuity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. This paper is a report on a study analysing the effect of the umbilical cord cutting experience on fathers’ emotional involvement with their infants. Background. Participation in childbirth offers an opportunity for father and mother to share the childbirth experience, so it is vital that midwives improve the fathers’ participation in this event. Design. A quasi-experimental study with a quantitative methodology was implemented. Methods. One hundred and five fathers were recruited as part of a convenience sample in a Maternity Public Hospital in a Metropolitan City in Portugal, between January and May of 2008. The Bonding Scale, the Portuguese version of the ‘Mother-to-Infant Bonding Scale’ was used to evaluate the fathers’ emotional involvement with the neonate at different moments: before childbirth, first day after childbirth and first month after childbirth. After childbirth, the fathers were divided into three separate groups depending on their umbilical cord cutting experience. Results. The results demonstrate that the emotional involvement between father and child tends to increase during the first days after childbirth and to decrease when evaluated 1 month after birth, for fathers who did not cut the umbilical cord. However, fathers who cut the umbilical cord demonstrate an improvement in emotional involvement 1 month later. Conclusion. Results suggest that the umbilical cord cutting experience benefits the father’s emotional involvement with the neonate, supporting the benefits of his participation and empowerment in childbirth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rotary thermal diffusion column with the inner cylinder rotating and the outer cylinder static was used to separate n-heptane-benzene mixtures at different speeds of rotation. The results show that the column efficiency depends on the speed of rotation. For the optimum speed the increase in efficiency relative to the static column was of the order of 8%. The role of the geometric irregularities in the annulus width on performance of the rotary column is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Educação (área de especialização em Educação Matemática).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess the clinical significance of transient ischemic dilation of the left ventricle during myocardial perfusion scintigraphy with stress/rest sestamibi. METHODS: The study retrospectively analyzed 378 patients who underwent myocardial perfusion scintigraphy with stress/rest sestamibi, 340 of whom had a low probability of having ischemia and 38 had significant transient defects. Transient ischemic dilation was automatically calculated using Autoquant software. Sensitivity, specificity, and the positive and negative predictive values were established for each value of transient ischemic dilation. RESULTS: The values of transient ischemic dilation for the groups of low probability and significant transient defects were, respectively, 1.01 ± 0.13 and 1.18 ± 0.17. The values of transient ischemic dilation for the group with significant transient defects were significantly greater than those obtained for the group with a low probability (P<0.001). The greatest positive predictive values, around 50%, were obtained for the values of transient ischemic dilation above 1.25. CONCLUSION: The results suggest that transient ischemic dilation assessed using the stress/rest sestamibi protocol may be useful to separate patients with extensive myocardial ischemia from those without ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proceso cultural en las Sierras de Córdoba fue habitualmente concebido como marginal con respecto al Noroeste Argentino. Tras el establecimiento del esquema básico de la secuencia prehispánica, a mediados del siglo pasado, se definió una etapa agroalfarera de cronología tardía, que continuaba a una extensa etapa precerámica cuyos límites se aproximaban a la transición Pleistoceno-Holoceno. Se hacía referencia, de este modo, al advenimiento de un modo de vida agrícola y aldeano, que reemplazaba a otro basado en la caza y recolección. Dicha transformación, alternativamente atribuida a la población cazadora local o a una migración de grupos agricultores desde regiones vecinas, se habría consumado hacia 1500 AP, fijando uno de los límites de la dispersión de la agricultura andina. Es necesario destacar la extremada escasez y el carácter indirecto de las evidencias arqueológicas utilizadas para sustentar la ocurrencia de tal proceso. Asimismo, la vigencia de supuestos que han comenzado a mostrar inconsistencias con los resultados de las recientes investigaciones. Entre ellos, principalmente, el que asume que la introducción de la agricultura dio paso a una transformación radical de las sociedades prehispánicas, constituyendo un hito fundamental en su devenir histórico, el comienzo de una nueva etapa. Nuestros últimos estudios en el sector central de las Sierras de Córdoba apuntaron, entre otros objetivos, a reconocer indicadores arqueológicos directos de producción agrícola, así como de la manipulación y consumo de plantas cultivadas. Los primeros resultados nos permiten vislumbrar un escenario complejo que desafía los modelos vigentes. El consumo de maíz, por ejemplo, parece haber antecedido por muchos siglos a la adopción de prácticas agrícolas. El acceso a este cultígeno, sumado a otros elementos, indicaría cambios entre los cazadores-recolectores serranos, promovidos por su integración en redes macrorregionales que los vincularon con sociedades agricultoras de la vertiente oriental andina y quizás del Chaco Santiagueño, por lo menos desde 2500 AP. En definitiva, la agricultura no parece haber sido adoptada rápidamente ni provocado transformaciones profundas e inmediatas en la organización de los grupos prehispánicos. Se ha observado, por el contrario, la incorporación gradual de distintas innovaciones que incluso permiten relacionar la manipulación y más tarde el cultivo de plantas domesticadas, con procesos de intensificación productiva de mayor escala temporal. Uno de nuestros objetivos en este proyecto consiste, básicamente, en profundizar las investigaciones en curso a fin de ampliar el cuerpo de datos con el cual analizar y discutir el problema de la dispersión agrícola en la región. Ello implica el tratamiento de diferentes líneas de evidencia, en particular: 1) la distribución regional de sitios arqueológicos y las modalidades de ocupación de las tierras cultivables; 2) la búsqueda de superficies de cultivo en sitios estratificados; y 3) estudios arqueobotánicos, polínicos y de isótopos estables. Se entiende que no le corresponde a la arqueología asumir apriorísticamente el significado histórico de la introducción de la agricultura, sino establecerlo en cada caso puntual a través de la investigación concreta. Nuestro segundo objetivo consiste, por lo tanto, en delinear los cambios (económicos, tecnológicos, políticos, sociales) que acompañaron al proceso de dispersión agrícola. Ello implica el tratamiento de diferentes problemas, entre otros: 1) las prácticas de apropiación de los recursos silvestres; 2) la continuidad y cambio tecnológico; 3) la movilidad y la articulación microambiental; y 4) los aspectos políticos y sociales ligados a prácticas como la molienda grupal y la producción del arte rupestre. The radical chage of societies from hunter-gatherers to farmers in 1500 BP was considered a milestone whitin the cultural process of pre-hispanic societies in Cordoba Hill. But there is a shortage of archaeological remains to support this change and there are weak hypotheses of absolute transformations. During the last years, our studies carried out on the central area of Cordoba Hill have tried to recognize direct archaeological signs of agriculture production as well as the handling and consumption of crops. The first results show a complex set that challenges the current theoretical models. For example, the corn was probably eatten prior to its adoption for farm practices. Our first main consists in increasing a corpus of data about the spread of agriculture in Cordoba region that we have been researching for the last years. These researches involve different lines of evidence: 1-regional location of archaeological sites and kinds of occupation on cultivable lands; 2-the search for plots at archaeological sites; 3-archaeobotanical, pollen and stable isotopes studies. Our second main consists in outlining changes within the spread of agriculture. It implies to considering different problems: 1-the practices to gatherer wild resources; 2-the continuity and changes of technologies; 3-the mobility and the articulation on the micro-environment; 4-political and social aspects in connection with activities such as groupal grinding and rock art productions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente proyecto se propone como parte inicial de una investigación sobre la relación entre naturaleza/cultura/técnica. Tradicionalmente la naturaleza y la cultura se han considerado como ámbitos diferenciados y opuestos. Y es en esta distinción donde la técnica adquiere un lugar central. El pensamiento occidental sobre la técnica ha recibido diversas interpretaciones: desde una subordinación con respecto al conocimiento verdadero (episteme) en la filosofía clásica, un optimismo sobre la técnica como posibilidad de dominación de la naturaleza en el Renacimiento y la Ilustración, y la ambigüedad y desasosiego romántico (Mitcham, 1979). Durante el siglo XX se distinguen dos posiciones antagónicas sobre la técnica. Por un lado, una actitud “crítica” donde pueden identificarse los trabajos de filósofs de diferentes tradiciones como Ortega y Gasset (1939), Heidegger (1954), Mumford (1971) Ellul (1960) y la Escuela de Frankfurt. Por otro lado, una filosofía de la técnica “ingenieril” que consiste en el análisis de la tecnología como un paradigma de pensamiento y acción humana. Esta dicotomía ha sido interpretada por Eco como “apocalípticos e integrados”. Más allá de las mencionadas diferencias, lo que tienen en común ambas posiciones es que parten de una dicotomía entre cultura y naturaleza. Nuestra perspectiva rechaza esta dicotomía, por el contrario, evidenciamos una creciente imbricación entre ambas donde las fronteras entre una y otra se hacen difusas. La noción de “objeto técnico” propuesta por Simondon (2007) hace referencia a la inserción del objeto técnico en la cultura, donde debe reconocerse la “realidad humana” presente en el mismo. Ahora bien, esto no significa “humanizar el objeto técnico”, sino más bien indagar sobre el lugar que este ocupa en la cultura como también establecer su relación con la naturaleza. En el siglo XVII el hombre mismo es reinterpretado como máquina (La Mettrie, 2000). En la actualidad pueden identificarse dos tendencias en la concepción de la técnica: los «humanos-máquinas» y las «máquinas-humanas», en otras palabras, la disposición del humano hacia la máquina y la tendencia de la máquina hacia lo humano. No obstante, ambas posiciones siguen manteniendo una distinción taxonómica entre el cuerpo –o lo orgánico- y lo maquínico, lo que implica una consideración de esta relación de manera extrínseca. Frente a esta tensión Haraway propone el concepto de cyborg: «un organismo cibernético» (1995). Los desarrollos tecnológicos han producido una modificación tal en la vida de los seres orgánicos en los cuales ya no puede concebirse su cuerpo independientemente de la tecnología. Esto conduce a replantear la distinción entre “animales/hombres/máquinas”, entendiendo a los mismos como expresiones de naturaleza, cultura y tecnología respectivamente. Nuestra investigación parte de la hipótesis que la técnica diluye diferencias de orden natural y cultural a través de los objetos técnicos que son productos culturales. La estética se ocupa de la percepción sensible del mundo no puede eludir su dimensión técnica. Al margen de la crítica a la “Industria cultural” consideramos relevante la aproximación de Benjamin al problema de la técnica porque aborda la imbricación antes mencionada en el campo de la percepción. Según Benjamin la irrupción de la técnica al mismo tiempo que posibilita una estetización de la política que confluye en el fascismo como punto extremo también abre la posibilidad de desmontar la ideología del progreso infinito (1967). Una integración entre aproximaciones estéticas y políticas a la técnica Flusser (1983) propone la “caja negra” como metáfora de la técnica contemporánea. Su propuesta es la “apertura de la caja negra” que consiste en tomar conocimiento del funcionamiento del dispositivo. Nuestra propuesta de investigación aborda la técnica desde una consideración filosófica/estética/política, donde redefiniremos la técnica partiendo de la imbricación entre cultura y naturaleza. This project will set the basis for a sustained research on the relation nature/culture/technique. They have been traditionally considered as separate and even opposite fields. And it is on the brink of this distinction where technique plays a central role. In Western thought technique has received many interpretations since the beginnings of philosophy: from a subordination to true knowledge (episteme) in classic philosophy, or the optimism which sees in technique the possibility of dominating nature in the Renaissance and in the Enlightenment, to the Romantic ambiguity and uneasiness towards technological change (Mitcham, 1979). During the twentieth century two opposed approach on technique prevail. On one hand, a “critical” attitude such defines the work of philosophers of different traditions such as Ortega y Gasset (1939), Heidegger (1954), Mumford (1971) Ellul (1960) and the Frankfurt School. On the other hand there is an “engineering” philosophy of technique that consists in the analisis of technology as a paradigm to understand human action and thought. Besides their differences, both positions have in common a dichotomy between nature and culture. We reject such dichotomy. On the contrary we consider there is a growing intertwinement between both which blurs the borders of the concepts. Simondon’s notion of “technical object” refers to the insertion of the technique in culture where the “human reality” in it must be recognised. This does not imply “humanising the technical object”, but investigate on the role it plays on culture and establishing its relation to nature. To articulate this relation we will work with unorthodox approaches on technique such as Benjamin (1967), Flusser (1983) and others. The hypothesis of our project is that the traditional distinction of “animal/man/machine” must be re-thought, therefore raising the question on the blurring line between nature, culture and technique and its effects in philosophy, politics and aesthetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable interest in alcohol in Irish society, yet minimal sociologcial understanding of its consumption, particularly of the sites where most drinking occurs: the country's 8750 pubs. Despite widespread public discussions on the role of the pub, there is scant social science evidence to better inform debate. Pubs are central to Irish community and are key sites of social interaction. American sociologist Ray Oldenburg has argued that "third places" (neither workplace nor home) are crucial to the maintenance of the community and the enhancement of social capital. According to Oldenburg, the role of the third place in the community is to provide continuity, regularity, a sense of place - all of which conceptually contribute to the construction of the self, the projection of the self within the public sphere, the distribution of social capital and the generation of a collective identity. The pub is the archetypal third place, but Oldenburg is concerned that modern pubs are less able to provide this vital function. Social scientists have suggested that community is in a state of fragmentation and decline due to changes in modes of social interaction and a decrease in shared spaces, resulting in a weakened connection to place. Community without propinquity has been characterised by social alienation, fragmentation and what Oldenburg refers to as the "problem of place" (13). Third places, and thus the Irish pub, have been particularly affected. In order to increase the sociological knowledge of the pub in Ireland, this project critically engages with the pub to assess the importance that public drinking houses have in the everyday. Moreover, this research sets out to investigate the people/place relationship using the pub as an investigative lens and examine the ways in which people shape place, place shapes people and how that relationship is implicated in the construction of irish identities. Furthermore, this is also an articulation of a cultural shift within Ireland and Irish places whose effects are deep and multi-layered. This project aims to explore the development of the contemporary geography of identity as the irish pub as a third place is transformed or disappears from the social landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research studies the phenomenon of national and corporate culture. National culture is the culture the members of a country share and corporate culture is a subculture which members of an organisation share (Schein, 1992). The objective of this research is to reveal if the employees within equivalent Irish and American companies share the same corporate and national culture and to ascertain if, within each company, there is a link between national culture and corporate culture. The object of this study is achieved by replicating research which was conducted by Shing (1997) in Taiwan. Hypotheses and analytical tools developed by Shing are employed in the current study to allow comparison of results between Shing’s study and the current study. The methodology used, called for the measurement and comparison of national and corporate culture in two equivalent companies within the same industry. The two companies involved in this study are both located in Ireland and are of American and Irish origin. A sample of three hundred was selected and the response rate was 54%. The findings from this research are: (1) The two companies involved had different corporate cultures, (2) They had the same national culture, (3) There was no link between national culture and corporate culture within either company, (4) The findings were not similar to those of Shing (1997). The implication of these findings is that national and corporate culture are separate phenomena therefore corporate culture is not a response to national culture. The results of this research are not reflected in the finding’s of Shing (1997), therefore they are context specific. The core recommendation for management is that, corporate culture should take account of national culture. This is because although employees recognise the espoused values of corporate culture (Schein, 1992), they are at the same time influenced by a much stronger force, their national culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Advantages and disadvantages of ad hoc percutaneous coronary intervention have been described. However little is known about the radiation exposure of that procedure as compared with the staged intervention.Objective:To compare the radiation dose of the ad hoc percutaneous coronary intervention with that of the staged procedureMethods:The dose-area product and total Kerma were measured, and the doses of the diagnostic and therapeutic procedures were added. In addition, total fluoroscopic time and number of acquisitions were evaluated.Results:A total of 568 consecutive patients were treated with ad hoc percutaneous coronary intervention (n = 320) or staged percutaneous coronary intervention (n = 248). On admission, the ad hoc group had less hypertension (74.1% vs 81.9%; p = 0.035), dyslipidemia (57.8% vs. 67.7%; p = 0.02) and three-vessel disease (38.8% vs. 50.4%; p = 0.015). The ad hoc group was exposed to significantly lower radiation doses, even after baseline characteristic adjustment between both groups. The ad hoc group was exposed to a total dose-area product of 119.7 ± 70.7 Gycm2, while the staged group, to 139.2 ± 75.3 Gycm2 (p < 0.001).Conclusion:Ad hoc percutaneous coronary intervention reduced radiation exposure as compared with diagnostic and therapeutic procedures performed at two separate times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The male of Eneoptera surinamensis (Orthoptera-Eneopteridae) is provided with 9 chromosomes, that is, with 3 pairs of autosomes and 3 sex chromosomes. Spermatogonia. - The autosomes of the spermatogonia are of the same size and U-shaped. One of the sex chromosomes approximately equalling the autosomes in size is telocentric, while the other two are much larger and V-shaped. One of the latter is smaller than the other. The sex chromosomes as showed in Figs. 1 and 2 are designated by X, Yl and Y2, X being the larger V, Yl the smaller one and Y2 the rod-shaped. Primary spermatocytes. - Before the growth period of the spermatocytes all the three sex chromosomes are visible in a state of strong heteropycnosis. X is remarkable in this stage in having two long arms well separated by a wide commissural segment. (Figs. 4, 5 and 6). During the growth period Y2 disappears, while X and Yl remain in a condensed form until metaphase. These may be separated from one another or united in the most varied and irregular manner. (Fig. 7 to 12). In the latter case the segments in contact seem to be always different so that we cannot recognize any homology of parts in the sense os genetics. At diplotene Y2 reappears together with the autosomal tetrads. X and Yl may again be seen as separate or united elements. (Figs. 13 and 14). At later diakinesis and metaphase the three sex chromosomes are always independent from each other, Y2 being typically rod-shaped, X and Yl V-shaped, X being a little larger than Yl. (Fig. 15 to 18). At metaphase the three condensed tetrads go to the equatorial plane, while the sex chromosomes occupy any position at both sides of this plane. In almost all figures which could be perfectly analysed X appeared at one side of the autosomal plate an Yl together with Y2 far apart at the other side. (Figs. 16 and 18). Only a few exception have been found. (Figs. 17 and 19). At anaphase X goes in precession to one pole, Yl and Y2 to the other (Figs. 20 and 21). As it is suggested by the few figures in which a localization of the sex chromosomes different from the normal has been observed, the possibility of other types of segregation of these elements cannot be entirely precluded. But, if this does happen, the resulting gametes should be inviable or give inviable zygotes. Early in anaphase autosomes and sex chromosomes divide longitudinally, being maintained united only by the kinetochore. (Figs. 20 and 21). At metaphase the three sex chromosomes seem to show no special repulsion against each other, X being found in the proximity of Yl or Y2 indifferently. At anaphase, however, the evidences in hand point to a stronger repulsion between X on the one side and both Ys on the other, so that in spite of the mutual repulsion of the latter they finish by going to the same pole. Secondary spermatocytes. - At telophase of the primary spermatocytes all the chromosomes enter into distension without disappearing of view. A nuclear membrane is formed around the chromosomes. All the chromosomes excepting Y2 which has two arms, are four-branched. (Fig. 22). Soon the chromosomes enter again into contraction giving rise to the secondary metaphase plate. Secondary spermatocytes provided as expected with four and five chromosomes are abundantly found. (Figs. 23 and 24). In the former all chromosomes are X-shaped while in the latter there is one which is V-shaped. This is the rod- shaped Y2. In the anaphase of the spermatocytes with four chromosomes all the chromosomes are V-shaped, one of them (X) being much larger than the others. In those with five there is one rod-shaped chromosome (Y2). (Fig. 25), Spermatids. Two classes of spermatids are produced, one with X and other with Yl and Y2. All the autosomes as well as Y2 soon enter into solution, X remaining visible for long time in one class and Yl in the other. (Figs. 26 and 27). Since both are very alike at this stage, one cannot distinguish the two classes of spermatids. Somatic chromosomes in the famale. - In the follicular cells of the ovary 8 chromosomes were found, two of which are much larger than the rest. (Figs. 29 and 30). These are considered as being sex chromosomes. CONCLUSION: Eneoptera surinamensis has a new type of sex-determining mechanism, the male being X Yl Y2 and the female XX. The sex chromosomes segregate without entering into contact at metaphase or forming group. After a review of the other known cases of complex sex chromosome mechanism the author held that Eneoptera is the unique representative of a true determinate segregation of sex chromosomes. Y2 behaving as sex chromosome and as autosome is considered as representing an intermediary state of the evolution of the sex chromosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.