982 resultados para Sensor output
Resumo:
The influence of lateral propagating modes on the threshold current and the spontaneous emission factor in selectively oxidized vertical cavity surface-emitting lasers (VCSELs) is investigated based on the mode behaviors of lateral propagating modes and the rate equation model. The numerical results show that the lateral propagating modes may be trapped in the aperture region for the selectively oxidized VCSEL with two oxide layers, one above and one below the active region. The output characteristics of VCSELs can be affected due to the reabsorption of the quasitrapped lateral propagating modes. A lower threshold current can be expected for a VCSEL with double oxide layers than that with a single oxide layer. The numerical results of rate equations also show that a larger spontaneous emission factor can be obtained by fitting the output-input curves for the VCSEL with double oxide layers. (C) 1999 American Institute of Physics. [S0021-8979(99)07919-0].
Resumo:
A biosensor based on an H+ ion sensitive field effect transistor (H+-ISFET) and penicillin G acylase has been developed. The response time of the sensor to different concentrations of penicillin G was 30 s. In a 20 mM phosphate buffer at pH 7.0, the linear range of the calibration curve was from 0.5 to 8 mM. The coefficients of variation for three samples with 20 repeated measurements were below 5%. Stability of the sensor could reach about 6 months and more than 1000 runs were performed without a significant decrease of the output value. The sensor was tested for measurement of the penicillin G content in penicillin fermentation broth. Forty samples with low and high concentrations of penicillin G were chosen for the correlation test. The values assayed by the sensor method were compared with the values assayed by HPLC method, the correlation coefficient (r) was 0.9944 and the regression equation was y = 1.034X - 2083.7 respectively. The different measuring methods are discussed in the text. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Output coupling efficiencies are analyzed for triangular and square microlasers connected with an output waveguide by FDTD simulation. The results show that square resonator with an output waveguide connected to the midpoint of one side can have high output coupling efficiency and a good mode selection.
Resumo:
This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.
Resumo:
The basic principle and critical characteristics of unattended ground sensors (UGS) based on fiber optic disk accelerometers are introduced. Mechanical principles of fiber optic disk accelerometers (FODA) and calculation methods are presented. An FODA with a high sensitivity of 120rad/g and a resonance frequency of 300Hz is designed and used for detection in military affair.
Resumo:
A Very-Small-Aperture Laser with a 250 X 500 nm(2) aperture has been created on a 650nm edge emitting LD. The highest far-field output power is 1.9mW and the power per unit emission area is about 15 MW/mu m(2). The special fabrication process and high output power mechanism are demonstrated respectively. The near-field distribution properties are also analyzed theoretically and experimentally.
Resumo:
The performance of the current sensor in power equipment may become worse affected by the environment. In this paper, based on ICA, we propose a method for on-line verification of the phase difference of the current sensor. However, not all source components are mutually independent in our application. In order to get an exact result, we have proposed a relative likelihood index to choose an optimal result from different runs. The index is based on the maximum likelihood evaluation theory and the independent subspace analysis. The feasibility of our method has been confirmed by experimental results.
Resumo:
An enhanced technique for interrogating fiber Bragg grating wavelength shift using cascade wavelength division multiplexer (WDM) couplers was proposed and demonstrated. Three WDM couplers which show a linear filter function over the expected wavelength range are employed and cascaded to track Bragg wavelength shifts. Compared with single WDM demodulator. sharper spectral slope is obtained and considerable linear filter range is kept. The static and dynamic strain sensor demodulation experiments demonstrated that the simple passive technique improves the sensitivity approximately two times and keeps 5nm linear demodulation range based on our devices. The cascade WDM coupler demodulation system has high scan rate which can be used to monitor fast vibration.
Resumo:
In this paper, a low-complexity soft-output QRD-M detection algorithm is proposed for high-throughput Multiple-input multiple-output (MIMO) systems. By employing novel expansion on demand and distributed sorting scheme, the proposed algorithm can reduce 70% and 85% foundational operations for 16-QAM and 64-QAM respectively compared to the conventional QRD-M algorithm. Furthermore, the proposed algorithm can yield soft information to improve the bit error rate (BER) performance. Simulation results show that the proposed algorithm can achieve a near-NIL detection performance with less foundational operations