968 resultados para Semilinear Schrodinger Equation
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.
Resumo:
We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The (2 + 1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfies the condition R not-equal 30. A solution to this equation is explicitly exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink.
Resumo:
Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.
Resumo:
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient and a basic nonlinear bulk velocity profile. In the limit of long wavelength and large nondimensional surface tension we show that hydrothermal surface-wave instabilities may give rise to disturbances governed by the Kuramoto-Sivashinsky equation. A possible connection to hot-wire experiments is also discussed. © 1994.
Resumo:
The stability of the parameters of the Johnson-Mehl-Avrami equation was studied using two parametrizations of the sigmoidal function and its fit to some kinetic data. The results indicate that one of the forms of the function has more stable parameters and only for this form it is reasonable to use, as an approximation, the linear regression theory to analyse the parameters. © 1995 Chapman & Hall.