870 resultados para Semi-infinite linear programming
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.
Resumo:
Verificar a influência de fatores do meio ambiente sobre características de produção e reprodução em grupos genéticos de bovinos leiteiros explorados em algumas fazendas nos municípios de Irituia e Mãe do rio no Nordeste Paraense. Foi utilizada uma média de 454 animais em lactação mestiças de Holandês, Pardo-Suíça e Girolando pertencentes a duas fazendas com sistema de criação semi-intensivo na época menos chuvosa. As médias e desvio-padrão para produção de leite total foram iguais a 1097,36 ± 330,47 Kg, com coeficiente de variação igual a 25,64% sendo que o grupo genético Holandesa, a época de parto menos chuvosa e o ano de 2007 apresentaram maior produção. O período de lactação apresentou efeito linear e crescente sobre a produção de leite total. O período de lactação apresentou média e desvio-padrão iguais a 218,17 ± 43,17 dias, a maior média para o período de lactação foi observada na época mais chuvosa e a média do período de lactação diminuiu no decorrer dos anos 2007 e 2008. A média e desvio padrão de intervalo entre partos encontrado no rebanho foi igual a 398,975 ± 60,85 dias. A época menos chuvosa apresentou uma média de intervalo entre partos menor que época mais chuvosa e a média de intervalo entre partos foi reduzindo a partir de 2006. A média de idade ao primeiro parto encontrado foi de 38,57 ± 5,81 meses. Os coeficientes de determinação foram maiores que 0,85 (R2a > 0,85), sendo que para o grupo genético Holandesa, os ajustes foram melhores em relação aos ajustes dos outros dois grupos genéticos. Para o grupo genético Girolando, o formato da curva de lactação diferiu dos outros dois grupos genéticos dificultando o ajuste pelas funções Gama Incompleta, Linear Hiperbólica e Polinomial Inversa. Os ajustes promovidos pela função polinomial inversa apresentaram ligeiro desvio em relação às outras duas funções. O grupo genético Holandesa apresentou produção ao pico e persistência um pouco mais elevados em relação aos outros grupos genéticos.
Resumo:
Neste trabalho apresentamos a solução do campo eletromagnético gerado por um dipolo elétrico horizontal em meios transversalmente isotrópicos com eixo de simetria vertical (TIV) e com eixo de simetria inclinado (TII). Para modelos unidimensionais, o campo eletromagnético foi obtido por duas metodologias distintas: (1) solução semi-analítica das equações de Maxwell com auxílio de potenciais vetores no caso TIV e (2) em modelos com anisotropia transversal inclinada o campo eletromagnético foi separado em primário e secundário, e então, o campo secundário foi calculado pelo método de elementos finitos no domínio (kx, ky, z) da transformada de Fourier. Para estruturas bidimensionais, foi aplicada a mesma metodologia usado nos modelos TII unidimensionais, onde o campo secundário foi calculado pelo método de elementos finitos no domínio (x, ky, z), da transformada de Fourier, com a utilização de malhas não estruturadas para discretização dos modelos. Estas respostas foram usados para avaliar os efeitos da anisotropia elétrica nos dados CSEM marinho 1D e 2,5D.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).
Resumo:
Apresentamos dois algoritmos automáticos, os quais se utilizam do método dos mínimos quadrados de Wiener-Hopf, para o cálculo de filtros lineares digitais para as transformadas seno, co-seno e de Hankel J0, J1 e J2. O primeiro, que otimiza os parâmetros: incremento das abscissas, abscissa inicial e o fator de deslocamento utilizados para os cálculos dos coeficientes dos filtros lineares digitais que são aferidos através de transformadas co-seno, seno e o segundo, que otimiza os parâmetros: incremento das abscissas e abscissa inicial utilizados para os cálculos dos coeficientes dos filtros lineares digitais que são aferidos através de transformadas de Hankel J0, J1 e J2. Esses algoritmos levaram às propostas de novos filtros lineares digitais de 19, 30 e 40 pontos para as transformadas co-seno e seno e de novos filtros otimizados de 37 , 27 e 19 pontos para as transformadas J0, J1 e J2, respectivamente. O desempenho dos novos filtros em relação aos filtros existentes na literatura geofísica é avaliado usando-se um modelo geofísico constituído por dois semi-espaços. Como fonte usou-se uma linha infinita de corrente entre os semi-espaços originando, desta forma, transformadas co-seno e seno. Verificou-se melhores desempenhos na maioria das simulações usando o novo filtro co-seno de 19 pontos em relação às simulações usando o filtro co-seno de 19 pontos existente na literatura. Verificou-se também a equivalência de desempenhos nas simulações usando o novo filtro seno de 19 pontos em relação às simulações usando o filtro seno de 20 pontos existente na literatura. Adicionalmente usou-se também como fonte um dipolo magnético vertical entre os semi-espaços originando desta forma, transformadas J0 e J1, verificando-se melhores desempenhos na maioria das simulações usando o novo filtro J1 de 27 pontos em relação ao filtro J1 de 47 pontos existente na literatura. Verificou-se também a equivalência de desempenhos na maioria das simulações usando o novo filtro J0 de 37 pontos em relação ao filtro J0 de 61 pontos existente na literatura. Usou-se também como fonte um dipolo magnético horizontal entre os semi-espaços, verificando-se um desempenho análogo ao que foi descrito anteriormente dos novos filtros de 37 e 27 pontos para as respectivas transformadas J0 e J1 em relação aos filtros de 61 e 47 pontos existentes na literatura, destas respectivas transformadas. Finalmente verificou-se a equivalência de desempenhos entre os novos filtros J0 de 37 pontos e J1 de 27 pontos em relação aos filtros de 61 e 47 pontos existentes na literatura destas transformadas, respectivamente, quando aplicados em modelos de sondagens elétricas verticais (Wenner e Schlumberger). A maioria dos nossos filtros contêm poucos coeficientes quando comparados àqueles geralmente usados na geofísica. Este aspecto é muito importante porque transformadas utilizando filtros lineares digitais são usadas maciçamente em problemas numéricos geofísicos.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)