885 resultados para Self-organisation, Nature-inspired coordination, Bio pattern, Biochemical tuple spaces
Resumo:
This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.
Resumo:
The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.
Resumo:
The Report of the Robens Committee (1972), the Health and Safety at Work Act (1974) and the Safety Representatives and Safety Committees Regulations (1977) provide the framework within which this study of certain aspects of health and safety is carried out. The philosophy of self-regulation is considered and its development is set within an historical and an industrial relations perspective. The research uses a case study approach to examine the effectiveness of self-regulation in health and safety in a public sector organisation. Within this approach, methodological triangulation employs the techniques of interviews, questionnaires, observation and documentary analysis. The work is based in four departments of a Scottish Local Authority and particular attention is given to three of the main 'agents' of self-regulation - safety representatives, supervisors and safety committees and their interactions, strategies and effectiveness. A behavioural approach is taken in considering the attitudes, values, motives and interactions of safety representatives and management. Major internal and external factors, which interact and which influence the effectiveness of joint self-regulation of health and safety, are identified. It is emphasised that an organisation cannot be studied without consideration of the context within which it operates both locally and in the wider environment. One of these factors, organisational structure, is described as bureaucratic and the model of a Representative Bureaucracy described by Gouldner (1954) is compared with findings from the present study. An attempt is made to ascertain how closely the Local Authority fits Gouldner's model. This research contributes both to knowledge and to theory in the subject area by providing an in-depth study of self-regulation in a public sector organisation, which when compared with such studies as those of Beaumont (1980, 1981, 1982) highlights some of the differences between the public and private sectors. Both empirical data and hypothetical models are used to provide description and explanation of the operation of the health and safety system in the Local Authority. As data were collected during a dynamic period in economic, political and social terms, the research discusses some of the effects of the current economic recession upon safety organisation.
Resumo:
The objective of this thesis is to investigate, through an empirical study, the different functions of the highways maintenance departments and to suggest methods by means of which road maintenance work could be carried out in a more efficient way by utilising its resources of men, material and plant to the utmost advantage. This is particularly important under the present circumstances of national financial difficulties which have resulted in continuous cuts in public expenditure. In order to achieve this objective, the researcher carried out a survey among several Highways Authorities by means of questionnaire and interview. The information so collected was analysed in order to understand the actual, practical situation within highways manintenance departments, and highlight any existing problems, and try to answer the question of how they could become more efficient. According to the results obtained by the questionnaire and the interview, and the analysis of these results, the researcher concludes that it is the management system where least has been done, and where problems exist and are most complex. The management of highways maintenance departments argue that the reasons for their problems include both financial and organisational difficulties, apart from the political aspect and nature of the activities undertaken. The researcher believes that this ought to necessitate improving the management's analytical tools and techniques in order to achieve the most effective way of performing each activity. To this end the researcher recommends several related procedures to be adopted by the management of the highways maintenance departments. These recommendations, arising from the study, involve the technical, practical and human aspects. These are essential factors of which management should be aware - and certainly should not neglect - in order to achieve its objectives of improved productivity in the highways maintenance departments.
Resumo:
The effectiveness of the strategies employed by the Urban Wildlife Group (a voluntary conservation organisation) to provide and manage three urban nature parks has been evaluated, using a multiple methods methodology. Where the level of community interest and commitment to a project is high, the utilisation of the community nature park strategy (to maximise benefits to UWG and the community) is warranted. Where the level of interest and commitment of the local community is low, a strategy designed to encourage limited involvement of the community is most effective and efficient. The campaign strategy, whereby the community and UWG take direct action to oppose a threat of undesirable development on a nature park, is assessed to be a sub-strategy, rather than a strategy in its own right. Questionnaire surveys and observations studies have revealed that urban people appreciate and indeed demand access to nature parks in urban areas, which have similar amenity value to that provided by countryside recreation sites. Urban nature parks are valued for their natural character, natural features (trees, wild flowers) peace and quiet, wildlife and openness. People use these sites for a mixture of informal and mainly passive activities, such as walking and dog walking. They appear to be of particular value to children for physical and imaginative play. The exact input of time and resources that UWG has committed to the projects has depended on the level of input of the local authority. The evidence indicates that the necessary technical expertise needed to produce and manage urban nature parks, using a user-oriented approach is not adequately provided by local authorities. The methods used in this research are presented as an `evaluation kit' that may be used by practitioners and researchers to evaluate the effectiveness of a wide range of different open spaces and the strategies employed to provide and manage them.
Resumo:
Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities as well as carefully matched low-ambiguity sentences. Results showed ambiguity-related responses in the posterior left inferior frontal gyrus (pLIFG) and posterior left middle temporal regions. The pLIFG activations were present for both syntactic and semantic ambiguities suggesting that this region is not specialised for processing either semantic or syntactic information, but instead performs cognitive operations that are required to resolve different types of ambiguity irrespective of their linguistic nature, for example by selecting between possible interpretations or reinterpreting misparsed sentences. Syntactic ambiguities also produced activation in the posterior middle temporal gyrus. These data confirm the functional relationship between these two brain regions and their importance in constructing grammatical representations of spoken language.
Resumo:
We report results on experimental and theoretical characterisation of self-pulsing in high concentration erbium doped fibre laser which is free from erbium clusters. Unlike previous models of self-pulsing accounting for pair-induced quenching (PIQ) on the clustered erbium ions, new model has been developed with accounting for statistical nature of the excitation migration and upconversion and resonance-like pumpto-signal intensity noise transfer. The obtained results are in a good agreement with the experimental data.
Resumo:
Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.
Resumo:
From a Social Identity Theory perspective, organisational identification arises through a cognitive process of self-categorisation. As a consequence a person need not have a formal relationship with an organisation in order to identify with it. In this conceptual paper, the authors draw on this proposal to argue that future members are capable of identifying with an organisation prior to entry, and that this initial pre-entry identification could contribute to a person’s subsequent post-entry organisational identification. The paper further suggests that because no distinction need be drawn between organisational identification in current and future members, we might expect to find the same antecedents of identification in both instances. The group engagement model (Tyler and Blader 2003) is called on to propose that when a future member experiences pride in, and respect from, an organisation before they join, this should positively influence their pre-entry organisational identification. The authors explore the managerial implications of these propositions, and argue that an organisation’s actions and practices that have been shown to influence a post-entry organisational identification should have an equivalent impact on future members’ organisational identification when observed during the pre-entry period. Two examples of such practices, organisational support and organisational communication, are used to illustrate this suggestion and a number of ways are discussed through which these practices may be experienced by a person before they join an organisation.
Resumo:
Humans are able to mentally adopt the spatial perspective of others and understand the world from their point of view. We propose that spatial perspective taking (SPT) could have developed from the physical alignment of perspectives. This would support the notion that others have put forward claiming that SPT is an embodied cognitive process. We investigated this issue by contrasting several accounts in terms of the assumed processes and the nature of the embodiment. In a series of four experiments we found substantial evidence that the transformations during SPT comprise large parts of the body schema, which we did not observe for object rotation. We further conclude that the embodiment of SPT is best conceptualised as the self-initiated emulation of a body movement, supporting the notion of endogenous motoric embodiment. Overall our results are much more in agreement with an ‘embodied’ transformation account than with the notion of sensorimotor interference. Finally we discuss our findings in terms of SPT as a possible evolutionary stepping stone towards more complex alignments of socio-cognitive perspectives.
Resumo:
We report observations of the diffraction pattern resulting when a nematic liquid crystal is illuminated with two equal power, high intensity beams of light from an Ar+ laser. The time evolution of the pattern is followed from the initial production of higher diffraction orders to a final striking display arising as a result of the self-diffraction of the two incident beams. The experimental results are described with good approximation by a model assuming a phase distribution at the output plane of the liquid crystal in the form of the sum of a gaussian and a sinusoid.
Resumo:
The potential for nonlinear optical processes in nematic-liquid-crystal cells is great due to the large phase changes resulting from reorientation of the nematic-liquid-crystal director. Here the combination of diffraction and self-diffraction effects are studied simultaneously by the use of a pair of focused laser beams which are coincident on a homeotropically aligned liquid-crystal cell. The result is a complicated diffraction pattern in the far field. This is analyzed in terms of the continuum theory for liquid crystals, using a one-elastic-constant approximation to solve the reorientation profile. Very good comparison between theory and experiment is obtained. An interesting transient grating, existing due to the viscosity of the liquid-crystal material, is observed in theory and practice for large cell-tilt angles.
Resumo:
Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes.
Resumo:
When faced with the task of designing and implementing a new self-aware and self-expressive computing system, researchers and practitioners need a set of guidelines on how to use the concepts and foundations developed in the Engineering Proprioception in Computing Systems (EPiCS) project. This report provides such guidelines on how to design self-aware and self-expressive computing systems in a principled way. We have documented different categories of self-awareness and self-expression level using architectural patterns. We have also documented common architectural primitives, their possible candidate techniques and attributes for architecting self-aware and self-expressive systems. Drawing on the knowledge obtained from the previous investigations, we proposed a pattern driven methodology for engineering self-aware and self-expressive systems to assist in utilising the patterns and primitives during design. The methodology contains detailed guidance to make decisions with respect to the possible design alternatives, providing a systematic way to build self-aware and self-expressive systems. Then, we qualitatively and quantitatively evaluated the methodology using two case studies. The results reveal that our pattern driven methodology covers the main aspects of engineering self-aware and self-expressive systems, and that the resulted systems perform significantly better than the non-self-aware systems.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.