989 resultados para Seismic noise
Resumo:
Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation - quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.
Resumo:
0
Resumo:
SCOPUS: er.j
Resumo:
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.
Resumo:
The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.
Resumo:
The generation and near-field radiation of aerodynamic sound from a low-speed unsteady flow over a two-dimensional automobile door cavity is simulated by using a source-extraction-based coupling method. In the coupling procedure, the unsteady cavity flow field is first computed solving the Reynolds averaged Navier–Stokes (RANS) equations. The radiated sound is then calculated by using a set of acoustic perturbation equations with acoustic source terms which are extracted from the time-dependent solutions of the unsteady flow. The aerodynamic and its resulting acoustic field are computed for the Reynolds number of 53,266 based on the base length of the cavity. The free stream flow velocity is taken to be 50.9m/s. As first stage of the numerical investigation of flow-induced cavity noise, laminar flow is assumed. The CFD solver is based on a cell-centered finite volume method. A dispersion-relation-preserving (DRP), optimized, fourth-order finite difference scheme with fully staggered-grid implementation is used in the acoustic solver
Resumo:
Pneumatic conveying of powder and granular material involve the mixed flow of solid particles in air. Characterisation of solid/gas flow regimes is important for the design, operation and control of plants involving such two-phase processes. This paper describes preliminary studies directed at identifying flow regimes in solid/gas flows by analysis of the process `noise' signals from a flow transmitter which has a relatively wide frequency response.
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique