947 resultados para Seismic facies
Resumo:
The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.
This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.
Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.
Resumo:
As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.
Resumo:
Cretaceous chert and porcellanite recovered at Site 436, east of northern Honshu, Japan, are texturally and mineralogically similar to siliceous rocks of comparable age at Sites 303, 304, and 307 in the northwest Pacific. These rocks probably were formed by impregnation of the associated pelagic clay with locally derived silica from biogenic and perhaps some volcanic debris. Fine horizontal laminations are the only primary sedimentary structures, suggesting minimal reworking and transport. Collapse breccias and incipient chert nodules are diagenetic features related to silicification and compaction of the original sediment. Disordered opal-CT (d[101] = 4.09 Å) and microgranular quartz (crystallinity index < 1.0) are the two common silica minerals present. Some samples show quartz replacing this poorly ordered opal- CT, supporting the notion that opal-CT does not become completely ordered (i.e., d[101] = 4.04 Å) in some cases before being converted to quartz. The present temperature calculated for the depth of the shallowest chert and porcellanite at this site is 30 °C; this may represent the temperature of conversion of opal-CT to quartz. High reflection coefficients (0.29-0.65) calculated for the boundary between chert-porcellanite and clay-claystone support the common observation that chert is a strong seismic reflector in deep-sea sedimentary sections.
Grain size distribution of the lagoonal deposits within the South Malé Atoll, Maldives, Indian Ocean
Resumo:
Seismic and multibeam data, as well as sediment samples were acquired in the South Malé Atoll in the Maldives archipelago in 2011 to unravel the stratigraphy and facies of the lagoonal deposits. Multichannel seismic lines show that the sedimentary succession locally reaches a maximum thickness of 15-20 m above an unconformity interpreted as the emersion surface which developed during the last glacial sea-level lowstand. Such depocenters are located in current-protected areas flanking the reef rim of the atoll or in infillings of karst dolinas. Much of the 50 m deep sea floor in the lagoon interior is current swept, and has no or very minor sediment cover. Erosive current moats line drowned patch reefs, whereas other areas are characterized by nondeposition. Karst sink holes, blue holes and karst valleys occur throughout the lagoon, from its rim to its center. Lagoonal sediments are mostly carbonate rubble and coarse-grained carbonate sands with frequent large benthic foraminifers, Halimeda flakes, red algal nodules, mollusks, bioclasts, and intraclasts, some of them glauconitic, as well as very minor ooids. Finer-grained deposits locally are deposited in current-protected areas behind elongated faros, i.e., small atolls which are part of the rim of South Malé Atoll. The South Malé Atoll is a current-flushed atoll, where water and sediment export with the open sea is facilitated by the multiple passes dissecting the atoll rim. With an elevated reef rim and tower-like reefs in the atoll interior it is an example of a leaky bucket atoll which shares characteristics of incipiently drowned carbonate banks or drowning sequences as known from the geological record.
Resumo:
Three main depositional sequences have been determined in the seismic records taken off West Spitsbergen (1) a Plio-Pleistocene sequence SPI-I with velocities of 1.7 to 2.8 km/sec; (2) a Pliocene allochthonous sequence SPI-II with velocities of 2.4 to 2.8 km/sec underlying unconformity U1; (3) a pre-Middle Oligocene sequence SPI-III with velocities of 2.9 to 4.8 km/sec underlying a distinct unconformity (U2) and deposited in front of the downfaulted Spitsbergen Platform indicating some opening of the Greenland Sea already before tbe time of magnetic anomaly 13 (36 m.y.b.p.). A marked change in the seismic configuration of the oceanic basement has been observed about 30 to 40 km east of the central Knipovich graben. The transition from the oceanic crust of the Knipovich Ridge to the strongly faulted, continental substratum of the Spitsbergen Platform occurs over a narrow zone and is associated with a pre-Middle Oligocene depocenter.
Resumo:
The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.
Resumo:
As noted in Part 1 of this report, the objective of the investigation was to apply principles of first-arrival seismic refraction to the problem of more quickly determining in-place dry density in highway materials. Part 2 of the report, contained herein, presents the results of both additional laboratory development of test techniques, plus extensive field test data.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
A fully coupled non-linear effective stress response finite difference (FD) model is built to survey the counter-intuitive recent findings on the reliance of pore water pressure ratio on foundation contact pressure. Two alternative design scenarios for a benchmark problem are explored and contrasted in the light of construction emission rates using the EFFC-DFI methodology. A strain-hardening effective stress plasticity model is adopted to simulate the dynamic loading. A combination of input motions, contact pressure, initial vertical total pressure and distance to foundation centreline are employed, as model variables, to further investigate the control of permanent and variable actions on the residual pore pressure ratio. The model is verified against the Ghosh and Madabhushi high acceleration field test database. The outputs of this work is aimed to improve the current computer-aided seismic foundation design that relies on ground’s packing state and consistency. The results confirm that on seismic excitation of shallow foundations, the likelihood of effective stress loss is greater in deeper depths and across free field. For the benchmark problem, adopting a shallow foundation system instead of piled foundation benefitted in a 75% less emission rate, a marked proportion of which is owed to reduced materials and haulage carbon cost.
Resumo:
Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1) extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2) outlining how risk reduction is framed in Italian planning system (at national and regional levels). The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.
Resumo:
New morpho-bathymetric and tectono-stratigraphic data on Naples and Salerno Gulfs, derived from bathymetric and seismic data analysis and integrated geologic interpretation are here presented. The CUBE(Combined Uncertainty Bathymetric Estimator) method has been applied to complex morphologies, such as the Capri continental slope and the related geological structures occurring in the Salerno Gulf.The bathymetric data analysis has been carried out for marine geological maps of the whole Campania continental margin at scales ranging from 1:25.000 to 1:10.000, including focused examples in Naples and Salerno Gulfs, Naples harbour, Capri and Ischia Islands and Salerno Valley. Seismic data analysis has allowed for the correlation of main morpho-structural lineaments recognized at a regional scale through multichannel profiles with morphological features cropping out at the sea bottom, evident from bathymetry.Main fault systems in the area have been represented on a tectonic sketch map, including the master fault located northwards to the Salerno Valley half graben. Some normal faults parallel to the master fault have been interpreted from the slope map derived from bathymetric data. A complex system of antithetic faults bound two morpho-structural highs located 20km to the south of the Capri Island. Some hints of compressional reactivation of normal faults in an extensional setting involving the whole Campania continental margin have been shown from seismic interpretation.
Resumo:
The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.
Resumo:
We acquired coincident marine controlled-source electromagnetic (CSEM), high-resolution seismic reflection and ocean-bottom seismometer (OBS) data over an active pockmark in the crest of the southern part of the Vestnesa Ridge, to estimate fluid composition within an underlying fluid-migration chimney. Synthetic model studies suggest resistivity obtained from CSEM data can resolve gas or hydrate saturation greater than 5% within the chimney. Acoustic chimneys imaged by seismic reflection data beneath the pockmark and on the ridge flanks, were found to be associated with high-resistivity anomalies (+2-4 m). High-velocity anomalies (+0.3 km/s), within the gas hydrate stability zone (GHSZ) and low-velocity anomalies (-0.2 km/s) underlying the GHSZ, were also observed. Joint analysis of the resistivity and velocity anomaly indicates pore saturation of up to 52% hydrate with 28% free gas, or up to 73% hydrate with 4% free gas, within the chimney beneath the pockmark assuming a non-uniform and uniform fluid distribution respectively. Similarly, we estimate up to 30% hydrate with 4% free gas or 30% hydrate with 2% free gas within the pore space of the GHSZ outside the central chimney assuming a non-uniform and uniform fluid distribution respectively. High levels of free-gas saturation in the top part of the chimney are consistent with episodic gas venting from the pockmark.
Resumo:
This primary report includes 168 common, vegetal and animal species collected on the intertidal rocky shore of the Nhatrang Bay, during the study of the ecology of this area.