945 resultados para Secretory Immunity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have generated proteoliposomes carrying proteins of Topanosoma cruzi for use as immunogens in BALB/c mice. T cruzi trypomastigote and amastigote forms were sonicated and mixed with SDS, with 94% recovery of soluble proteins. To prepare proteoliposomes, we have used a protocol in which dipalmitoylphosphatidylcholine, dipalmitoyl-phosphatidylserine and cholesterol were incubated with the parasite proteins. BALB/c mice immunized with 20 mu g were able to generate antibodies which, in Western blotting, reacted with the proteins of T cruzi. We further investigated the ability of peritoneal cells from immunized mice to arrest the intracellular replication of trypomastigotes, in vitro. After 72h of culture, the number of intracellular parasites in immunized macrophages decreased significantly, as compared to controls. Despite the fact that exposure of mice to T cruzi proteins incorporated into proteoliposomes generate antibodies and activate macrophages, the immunized mice were not protected against T cruzi intraperitoneal challenge. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine`s formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 run, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secreted phospholipases A(2) (sPLA(2)s) are water-soluble enzymes that bind to the surface of both artificial and biological lipid bilayers and hydrolyze the membrane phospholipids. The tissue expression pattern of the human group IID secretory phospholipase A(2) (hsPLA(2)-IID) suggests that the enzyme is involved in the regulation of the immune and inflammatory responses. With an aim to establish an expression system for the hsPLA(2)-IID in Escherichia coli, the DNA-coding sequence for hsPLA(2)-IID was subcloned into the vector pET3a, and expressed as inclusion bodies in E. coli (BL21). A protocol has been developed to refold the recombinant protein in the presence of guanidinium hydrochloride, using a size-exclusion chromatography matrix followed by dilution and dialysis to remove the excess denaturant. After purification by cation-exchange chromatography, far ultraviolet circular dichroism spectra of the recombinant hsPLA(2)-IID indicated protein secondary structure content similar to the homologous human group IIA secretory phospholipase A(2). The refolded recombinant hsPLA(2)-IID demonstrated Ca(2+)-dependent hydrolytic activity, as measuring the release free fatty acid from phospholipid liposomes. This protein expression and purification system may be useful for site-directed mutagenesis experiments of the hsPLA(2)-IID which will advance our understanding of the structure-function relationship and biological effects of the protein. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research documents related to the morphology and function of style branches and stigmatic surface of Asteraceae are still rather few, and the literature reports are thus controversial. We report in the present study that the stigmatic surfaces of two non-related species of Asteraceae (Lessingianthus grandiflorus and Lucilia lycopodioides) have features of semidry stigmas. Sporodermis of both species was also analyzed so that we could understand how the stigmatic surface works during pollen deposition and rehydration. Stylar branches and pollen grains (sporodermis) were studied using scanning and transmission electron microscopy (SEM and TEM) and histochemistry techniques. The inner and marginal bands of stylar branches in these species display intermediary features between the dry and wet types of stigma: the cuticle characterizes the dry stigma and cells with secretory activity characterize the wet stigma; these showed differences from what has been described to the Asteraceae family, where stigmatic surface of species from several tribes is considered dry. Pollen grains are medium-size to large with exine ornamentation (echinate and echinolophate) and abundant secretion which latter characterizes pollenkitt. We can assume that two processes might help pollen grain hydration on stigmatic surface in Lessingianthus grandiflorus and Lucilia lycopodioides: (1) the presence of pollenkitt, as observed in the secretory content inside exine cavities and around pollen grains; and (2) the secretory activity of stigmatic surface cells, whose secretion accumulates among intercellular and subcuticular spaces and leads to cuticle disruption during the floral receptive phase. Our results suggest that ultrastructural and histochemical studies should be considered when describing stigmatic surface and that the ""semidry"" feature within Asteraceae should be investigated still more in detail, so that the taxonomic or adaptation value of this trait in the family can be verified. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Original antigenic sin is failure to mount effective immunity to virus variants in a previously virus infected host. We have previously shown that prior immunity to a virus capsid protein inhibits induction from naive CD8 T cells of an IFN-g response to a MHC class I restricted epitope linked to the capsid protein, following immunisation with a capsid expressing the class I restricted epitope. The inhibition is independent of pre-existing antibody to the viral capsid, and the inhibition is observed in animal lacking B cells. CD8 restricted viral capsid specific T cell responses are also not required, but the inhibition is not observed in IL10 knockout mice. We now demonstrate that capsid antigen primed CD4+ T cells secrete IL10 in response to capsid antigen presented by DC, and deviate CD8 cells specific for the linked MHC Class I restricted epitope from IFN-g production to IL-5 production. Neutralizing IL10, either in vitro or in vivo, restores induction following immunisation of an antigen specific IFN-g response to an MHC Class I restricted epitope. This finding demonstrates a strategy for overcoming bias towards a Tc2 response to MHC Class I epitopes upon immunisation of a host already primed to antigen, facilitating immunotherapy for chronic viral infection or cancer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DC) are the potent antigen presenting cells which modulate T cell responses to self or non-self antigens. DC play a significant role in the pathogenesis of autoimmune diseases, inflammation and infection, but also in the maintenance of tolerance. NF-kappaB, particularly RelB is a crucial pathway for myeloid DC differentiation and functional maturation. While the current paradigm is that mature, nuclear RelB+ DC prime T cells for immunity/autoimmunity and immature DC for tolerance, RelB-deficient mice paradoxically develop generalised systemic autoimmune inflammatory disease with myelopoiesis and splenomegaly. Previous studies suggested abnormal DC differentiation in healthy relatives of type 1 diabetes (t1dm) patients. Therefore, we compared NF- kB activation in monocyte-derived DC from t1dm and non-t1dm controls in response to LPS. While resting DC appeared normal, DC from 6 out of 7 t1dm patients but no t2dm or rheumatoid arthritis patients failed to translocate NF- kB subunits to the nucleus in response to LPS, along with a failure to up-regulate expression of cell surface CD40 and MHC class I. NF- kB subunit mRNA increased normally in t1dm DC after LPS. Both the classical or non-canonical NF- kB pathways were affected as both TNF-a and CD40 stimulation led to a similarly abnormal NF- kB response. In contrast, expression of phosphorylated p38 MAPK and pro-inflammatory cytokine production was intact. These abnormalities in NF- kB activation appear to be generally and specifically applicable at a post-translational level in t1dm, and have the capacity to profoundly influence immunoregulation in affected individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precis Women with recurrent vulvovaginal candidiasis (RVC) due to a polymorphism in codon 54 of the MBL2 gene respond better to fluconazole maintenance therapy than do women with other underlying causes. Objective To explain differences in response rates to maintenance therapy with fluconazole in women suffering from RVC by evaluating associations with a polymorphism in the gene coding for mannose-binding lectin (MBL). Design Follow-up study, neted case-control group. Setting Women attending vulvoginitis clinic for RVC. Population Women participating in a multicentric study in Belgium with a degressive dose of fluconazole for RVC (the ReCiDiF trial) were divided into good responders, intermediate responders and nonresponders according to the number of relapses they experienced during therapy. From 109 of these women with adequate follow-up data, vaginal lavage with 2 ml of saline were performed at the moment of a proven acute attack at inclusion in the study, before maintenance treatment was started. A buccal swab was obtained from 55 age-matched women without a history of Candida infections, serving as a control group. Methods Extracted DNA from buccal or vaginal cells was tested for codon 54 MBL2 gene polymorphism by polymerase chain reaction and endonuclease digestion. Main outcome measures Frequency of MBL2 condon 54 allele B in women with optimal or poor response to maintenance therapy in composition with controls. Results Women (n = 109) suffering from RVC were more likely to carry the variant MBL2 codon 54 allele B than control women (20 versus 6.6%, OR 3.4 [95% CI 1.3-8.2], P = 0.01). B alleles were present in 25% of the 36 women not suffering from any recurrence during the maintenance therapy with decreasing doses of fluconazole (OR 4.9 [95% CI 1.9-12.5], P = 0.0007 versus controls), in 20% of the 43 women with sporadic recurrences (OR 3.6 [95% CI 1.4-9.2], P = 0.007 versus controls) and in 15% of the 30 women who had to interrupt the treatment regimen due to frequent relapses (P = 0.097 versus controls). Conclusions The MBL2 codon 54 gene polymorphism is more frequent in Belgian women suffering from RVC than in controls. The presence of the B allele is associated with a superior response to fluconazole maintenance therapy as compared with RVC patients without this polymorphism. We conclude that RVC due to deficient MBL production is more easily helped with antifungal medication than is RVC due to some other mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amongst the infectious diseases that threaten equine health, herpesviral infections remain a world wide cause of serious morbidity and mortality. Equine herpesvirus-1 infection is the most important pathogen, causing an array of disorders including epidemic respiratory disease abortion, neonatal foal death, myeloencephalopathy and chorioretinopathy. Despite intense scientific investigation, extensive use of vaccination, and established codes of practice for control of disease outbreaks, infection and disease remain common. While equine herpesvirus-1 infection remains a daunting challenge for immunoprophylaxis, many critical advances in equine immunology have resulted in studies of this virus, particularly related to MHC-restricted cytotoxicity in the horse. A workshop was convened in San Gimignano, Tuscany, Italy in June 2004, to bring together clinical and basic researchers in the field of equine herpesvirus-1 study to discuss the latest advances and future prospects for improving our under-standing of these diseases, and equine immunity to herpesviral infection. This report highlights the new information that was the focus of this workshop, and is intended to summarize this material and identify the critical questions in the field. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the influence of lactic acid on immune mediator release from vaginal epithelial cells. METHODS: The human vaginal epithelial cell line, VK2/E6E7, was cultured in the presence or absence of physiological concentrations of lactic acid, and in the presence or absence of the viral Toll-like receptor 3 agonist, poly (inosinic acid: cytidylic acid). Supernatants were assayed by enzyme-linked immunosorbent assay (ELISA) for interleukin (IL)-1 beta, IL-6, IL-8, IL-23, transforming growth factor (TGF)-beta and secretory leukocyte protease inhibitor. RESULTS: Vaginal epithelial cells spontaneously released IL-1 beta (25.9 pg/mL), IL-8 (1.0 ng/mL), TGF-beta (175 pg/mL), and secretory leukocyte protease inhibitor (33.8 ng/mL). Only TGF-beta production was marginally enhanced (49%) by addition of lactic acid alone. Poly (inosinic acid: cytidylic acid) by itself stimulated the release of IL-6 (305 pg/mL) and enhanced IL-8 production (2.8 ng/mL). The combination of poly (inosinic acid: cytidylic acid) and lactic acid markedly increased IL-8 production (5.0 ng/mL) and induced the release of IL-1 beta (96.2 pg/mL). The poly (inosinic acid: cytidylic acid)-mediated lactic acid effect on IL-1 beta and IL-8 release was abrogated when the lactic acid was neutralized or if acetic acid was substituted for lactic acid. CONCLUSION: Lactic acid enhances the release of selective mediators from vaginal epithelial cells and stimulates antiviral immune responses. (Obstet Gynecol 2011;118:840-6) DOI: 10.1097/AOG.0b013e31822da9e9

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Obesity is related to a higher rate of infections and some types of cancer. Here we analyzed the impact of obesity and weight loss induced by Roux-en-Y gastric bypass (RYGB) on immunological parameters, i.e., cytokine productions and natural killer cell function. Methods We analyzed 28 morbidly obese patients before and 6 months after RYGB. Biochemical parameters were analyzed in plasma. The percent of natural killer (NK) cells, their cytotoxicity, and the production of cytokines by peripheral blood mononuclear cells were analyzed. The percent of NK cells was determined by flow cytometry and cytokine production determined by enzyme-linked immunosorbent assay. NK cytotoxicity was determined by the lactate dehydrogenase release assay. Results The weight loss 6 months following surgery was 35.3 +/- 4.5 kg. RYGB also improves biochemical parameters. No significant difference was found in the percent of NK cells after surgery. We found an increase in the production of interferon-gamma, interleukin (IL)-12 and IL-18, but not in IL-2, 6 months after RYGB. Cytotoxic activity of NK cells was significantly enhanced 6 months after RYGB [17.1 +/- 14.7% before RYGB vs 51.8 +/- 11.3% at 6 months after, at 40: 1 effector to target cell ratio; p<0.001]. We observed significant post-surgical improvement in the cytotoxic activity curve in 22 out of 28 patients (78.6%), irrespective of the target to effector cell ratio. Conclusions The weight loss induced by RYGB modifies the production of cytokines related with NK cell function and improves its activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prophylactic vaccines for genital human papillomavirus (HPV) infection have been shown to be feasible in animal models, and suitable vaccine material based on virus-like particles can be produced in bulk at reasonable cost. Initiation of phase III clinical trials will follow definition of trial outcome measures through further epidemiological studies, and development-of assays of host protective immunity. Vaccines could in principle eliminate HPV-related disease, as the human race is the only natural host for the relevant papillomaviruses (PVs). Therapeutic vaccines for genital HPV infection are also possible, but have not yet been demonstrated as feasible in practice because the choice of vaccine antigens is difficult, the method of their optimal delivery is uncertain, and the nature of the relevant antiviral immunity is unknown. PV species specificity will require trials to be conducted in man, which will slow definition of an ideal vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.