962 resultados para Seasonal variations (Economics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative amounts of chloroplast tRNAs(Leu), tRNA(Glu), tRNA(Phe), tRNAs(Thr), and tRNA(Tyr) and of chloroplastic and cytoplasmic aminoacyl-tRNA synthetases were compared in green leaves, yellowing senescing leaves, and N(6)-benzyladenine-treated senescing leaves from bean (Phaseolus vulgaris, var Contender). Aminoacylation of the tRNAs using Escherichia coli aminoacyl-tRNA synthetases indicated that in senescing leaves the relative amount of chloroplast tRNA(Phe) was significantly lower than in green leaves. Senescing leaves treated with N(6)-benzyladenine contained higher levels of this tRNA than untreated senescing leaves. No significant change in the relative amounts of chloroplast tRNAs(Leu), tRNAs(Thr), and tRNA(Tyr) was detected in green, yellow senescing, or N(6)-benzyladine-treated senescing leaves. Relative levels of chloroplast tRNAs were also estimated by hybridization of tRNAs to DNA blots of gene specific probes. These experiments confirmed the results obtained by aminoacylation and revealed in addition that the relative level of chloroplast tRNA(Glu) is higher in senescing leaves than in green leaves. Transcription run-on assays indicated that these changes in tRNA levels are likely to be due to a differential rate of degradation rather than to a differential rate of transcription of the tRNA genes. Chloroplastic and cytoplasmic leucyl-, phenylalanyl-, and tyrosyl-tRNA synthetase activities were greatly reduced in senescing leaves as compared to green leaves, whereas N(6)-benzyladenine-treated senescing leaves contained higher enzyme activities than untreated senescing leaves. These results suggest that during senescence, as well as during senescence-retardation by cytokinins, changes in enzyme activities, such as aminoacyl-tRNA synthetases, rather than reduced levels of tRNAs, affect the translational capacity of chloroplasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Children’s Cancer Institute in Sydney recently launched an ambitious program. From early next year, scientists will analyse the unique cancer cells of 12 children diagnosed with the most aggressive forms of the disease to find the best treatment for each child. By 2020, they aim to have these individualised treatment options available to all children diagnosed with cancers that have a less than 30% survival rate. This way of tailoring treatment to each person is known as personalised medicine, and advances in DNA sequencing have paved the way for a new era in cancer management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carrier phase ambiguity resolution over long baselines is challenging in BDS data processing. This is partially due to the variations of the hardware biases in BDS code signals and its dependence on elevation angles. We present an assessment of satellite-induced code bias variations in BDS triple-frequency signals and the ambiguity resolutions procedures involving both geometry-free and geometry-based models. First, since the elevation of a GEO satellite remains unchanged, we propose to model the single-differenced fractional cycle bias with widespread ground stations. Second, the effects of code bias variations induced by GEO, IGSO and MEO satellites on ambiguity resolution of extra-wide-lane, wide-lane and narrow-lane combinations are analyzed. Third, together with the IGSO and MEO code bias variations models, the effects of code bias variations on ambiguity resolution are examined using 30-day data collected over the baselines ranging from 500 to 2600 km in 2014. The results suggest that although the effect of code bias variations on the extra-wide-lane integer solution is almost ignorable due to its long wavelength, the wide-lane integer solutions are rather sensitive to the code bias variations. Wide-lane ambiguity resolution success rates are evidently improved when code bias variations are corrected. However, the improvement of narrow-lane ambiguity resolution is not obvious since it is based on geometry-based model and there is only an indirect impact on the narrow-lane ambiguity solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasten ylähengitystiekirurgia (kita-nielurisojen poisto ja tärykalvon putkitus) on länsimaissa erittäin yleistä. Leikkausten lukumäärät vaihtelevat niin kansallisesti kuin kansainvälisestikin, mutta selvää syytä näille eroille ei tiedetä. Hoitosuositusten merkitys käytäntöihin on kyseenalaistettu ja voi olla, ettei hoitosuosituksia noudateta. Leikkaukset saattavat aiheuttaa lapsipotilaille psykologisen vamman, ja lisäksi niihin sisältyy komplikaatioiden, jopa kuoleman, vaara. Jotta haittoja voidaan välttää, on tärkeää tunnistaa ne lapset, jotka hyötyvät leikkauksesta. Ongelma on paitsi lääketieteellinen, myös taloudellinen: ylähengitystiekirurgiasta aiheutuu merkittäviä kuluja. Leikkausmäärien arvioiminen on tärkeää, jotta leikkauskäytäntöjä voidaan järkeistää. Tässä väitöskirjatyössä tutkittiin ylähengitystieleikkausten määriä Suomessa ja Norjassa sekä näiden kahden maan välillä. Aiempaa tutkimusta aiheesta ei kummassakaan maassa ole tehty. Kitarisanpoiston, välikorvan putkituksen, tärykalvopiston, nielurisanpoiston ja kita- ja nielurisanpoiston leikkausmäärät saatiin kansallisista tietokannoista. Lukuja verrattiin ko. maan lasten lukumäärään, maantieteelliseen sijoittumiseen sekä lasten ikään ja sukupuoleen. Lisäksi leikkausmääriä arvioitiin suhteessa korva-, nenä- ja kurkkulääkäreiden sekä yleislääkäreiden määrään, maantieteelliseen sijoittumiseen ja lääkäreiden ikään ja sukupuoleen. Leikkausten määrissä havaittiin suurta vaihtelua niin Suomessa kuin Norjassa. Suomessa suurimmat erot leikkausmäärissä löydettiin läntisen ja itäisen miljoonapiirin välillä. Läntisessä piirissä tehtiin lähes kaksin kertaa enemmän leikkauksia kuin itäisessä piirissä. Norjassa suurimmat erot olivat pohjoisen ja itäisen piirin välillä. Pohjoisessa piirissä tehtiin kaksinkertainen määrä leikkauksia itäiseen piirrin verrattuna. Suomessa tehtiin tutkimuksen koko aikavälillä enemmän kitarisanpoistoja kuin Norjassa, mutta ko. leikkausten määrä oli maassamme selvästi laskussa. Vuonna 2002 Suomessa tehtiin 2,5 kertaa enemmän kitarisanpoistoja kuin Norjassa. (Kita)nielurisanpoistoja tehtiin kuitenkin Suomessa vähemmän kuin Norjassa. Näiden leikkausten määrät pysyivät tutkimuksen aikavälillä Suomessa samalla tasolla, kun Norjassa leikkausmäärät hieman nousivat. Suomalaisia lapsia leikattiin keskimäärin paljon nuorempina kuin norjalaisia lapsia. Tutkimuksessa ei löydetty selitystä ylähengitystieleikkausten määrän suurelle vaihtelulle Suomessa ja Norjassa tai maiden välillä. Kuitenkin Suomessa tehtyjen kitarisanpoistojen huomattavan vähenemisen myötä maiden ylähengitystieleikkausten määrät lähenivät toisiaan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 17th Biennial Conference of the International Institute of Fisheries Economics and Trade (IIFET) was held in Brisbane in July 2014. IIFET is the principal international association for fisheries economics, and the biennial conference is an opportunity for the best fisheries economists in the world to meet and share their ideas. The conference was organised by CSIRO, QUT, UTAS, University of Adelaide and KG Kailis Ltd. This is the first time the conference has been held in Australia. The conferences covered a wide range of topics of relevance to Australia. These included studies of fishery management systems around the world, identified key issues in aquaculture and marine biodiversity conservation, and provided a forum for new modelling and theoretical approaches to analysing fisheries problems to be presented. The theme of the conference was Towards Ecosystem Based Management of Fisheries: What Role can Economics Play? Several sessions were dedicated to modelling socio-ecological systems, and two keynote speakers were invited to present the latest thinking in the area. In this report, the key features of the conference are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies exploring the role of upper airway viruses and bacteria in paediatric acute respiratory infections (ARI) focus on specific clinicaldiagnoses and/or do not account for virus–bacteria interactions. We aimed to describe the frequency and predictors of virus and bacteria codetection in children with ARI and cough, irrespective of clinical diagnosis. Bilateral nasal swabs, demographic, clinical and risk factor data were collected at enrollment in children aged <15 years presenting to an emergency department with an ARI and where cough was a symptom. Swabs were tested by polymerase chain reaction for 17 respiratory viruses and seven respiratory bacteria. Logistic regression was used to investigate associations between child characteristics and codetection of the organisms of interest. Between December 2011 and August 2014, swabs were collected from 817 (93.3%) of 876 enrolled children, median age 27.7 months (interquartile range13.9–60.3 months). Overall, 740 (90.6%) of 817 specimens were positive for any organism. Both viruses and bacteria were detected in 423 specimens (51.8%). Factors associated with codetection were age (adjusted odds ratio (aOR) for age <12 months = 4.9, 95% confidence interval (CI) 3.0, 7.9; age 12 to <24 months = 6.0, 95% CI 3.7, 9.8; age 24 to <60 months = 2.4, 95% CI 1.5, 3.9), male gender (aOR 1.46; 95% CI 1.1, 2.0), child care attendance (aOR 2.0; 95% CI 1.4, 2.8) and winter enrollment (aOR 2.0; 95% CI 1.3, 3.0). Haemophilus influenzae dominated the virus–bacteria pairs. Virus–H. influenzae interactions in ARI should be investigated further, especially as the contribution of nontypeable H. influenzae to acute and chronic respiratory diseases is being increasingly recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Regions are an energy sink of the Earth system, as the Sun rays do not reach the Poles for half of the year, and hit them only at very low angles for the other half of the year. In summer, solar radiation is the dominant energy source for the Polar areas, therefore even small changes in the surface albedo strongly affect the surface energy balance and, thus, the speed and amount of snow and ice melting. In winter, the main heat sources for the atmosphere are the cyclones approaching from lower latitudes, and the atmosphere-surface heat transfer takes place through turbulent mixing and longwave radiation, the latter dominated by clouds. The aim of this thesis is to improve the knowledge about the surface and atmospheric processes that control the surface energy budget over snow and ice, with particular focus on albedo during the spring and summer seasons, on horizontal advection of heat, cloud longwave forcing, and turbulent mixing during the winter season. The critical importance of a correct albedo representation in models is illustrated through the analysis of the causes for the errors in the surface and near-surface air temperature produced in a short-range numerical weather forecast by the HIRLAM model. Then, the daily and seasonal variability of snow and ice albedo have been examined by analysing field measurements of albedo, carried out in different environments. On the basis of the data analysis, simple albedo parameterizations have been derived, which can be implemented into thermodynamic sea ice models, as well as numerical weather prediction and climate models. Field measurements of radiation and turbulent fluxes over the Bay of Bothnia (Baltic Sea) also allowed examining the impact of a large albedo change during the melting season on surface energy and ice mass budgets. When high contrasts in surface albedo are present, as in the case of snow covered areas next to open water, the effect of the surface albedo heterogeneity on the downwelling solar irradiance under overcast condition is very significant, although it is usually not accounted for in single column radiative transfer calculations. To account for this effect, an effective albedo parameterization based on three-dimensional Monte Carlo radiative transfer calculations has been developed. To test a potentially relevant application of the effective albedo parameterization, its performance in the ground-based retrieval of cloud optical depth was illustrated. Finally, the factors causing the large variations of the surface and near-surface temperatures over the Central Arctic during winter were examined. The relative importance of cloud radiative forcing, turbulent mixing, and lateral heat advection on the Arctic surface temperature were quantified through the analysis of direct observations from Russian drifting ice stations, with the lateral heat advection calculated from reanalysis products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structuralvariations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.