936 resultados para Scientific research methodologies


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on an ~63 ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long-duration gamma-ray burst (GRB 070610). The outburst of this source was characterized by unique optical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed ~2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swift J195509.6+261406, which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source is a binary system hosting a black hole or a neutron star with a low-mass companion star (<0.12 M ☉) and with an orbital period smaller than a few hours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material’s parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio de las disciplinas científicas resulta más atractivo si se acompaña de actividades de carácter práctico. En este trabajo se propone un taller cuya finalidad es introducir al alumnado en el trabajo científico que realizan los geólogos y paleontólogos a través de la información paleoambiental y bioestratigráfica que proporcionan los microfósiles y su aplicación a la Crisis de Salinidad del Messiniense. Este periodo es considerado como uno de los acontecimientos más relevantes de la historia geológica del Mediterráneo y se caracteriza por una acumulación masiva de evaporitas en el fondo de la cuenca, que se relaciona con la desecación y posterior reinundación del Mediterráneo hace aproximadamente cinco millones de años. El taller consta de tres sesiones: una teórica, de introducción de los contenidos necesarios para el desarrollo de la actividad, para la que se proponen una serie de recursos bibliográficos y audiovisuales de libre acceso en internet; una práctica, de obtención de datos; y una final, de interpretación de los cambios paleoambientales que conlleva la presentación de los resultados en forma de artículo científico y posterior debate en el aula. Todos los datos necesarios para el desarrollo de la actividad se proporcionan en el presente artículo, si bien esta propuesta de taller queda abierta a las posibles modificaciones y mejoras que el profesorado considere oportunas. Para vertebrar esta propuesta, en forma de ejemplo de aplicación, se ha incluido el taller en la programación de la asignatura Biología y Geología (4º ESO). La puesta a punto de este taller pone de manifiesto que resulta idóneo para el trabajo en grupo en el aula permitiendo que el alumnado se sienta partícipe de todas las fases que constituyen una investigación científica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline/montmorillonite nanocomposites (PANI/M) were obtained by intercalation of aniline monomer into M modified with different cations and subsequent oxidative polymerization of the aniline. The modified-clay was prepared by ion exchange of sodium, copper and iron cations in the clay (Na–M, Cu–M and Fe–M respectively). Infrared spectroscopy confirms the electrostatic interaction between the oxidized PANI and the negatively charged surface of the clay. X-ray diffraction analysis provides structural information of the prepared materials. The nanocomposites were characterized by transmission electron microscopy and their thermal degradation was investigated by thermogravimetric analysis. The weight loss suggests that the PANI chains in the nanocomposites have higher thermal stability than pure PANI. The electrical conductivity of the nanocomposites increased between 12 and 24 times with respect to the pure M and this increase was dependent on the cation-modification. The electrochemical behavior of the polymers extracted from the nanocomposites was studied by cyclic voltammetry and a good electrochemical response was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study is to identify possible combinations of multiple goals that lead to different goal orientation profiles and to determine whether there are significant group differences in self-concept dimensions. The Achievement Goals Tendencies Questionnaire (AGTQ) and the Self-Description Questionnaire-II (SDQ-II) were administered to a sample of 2,022 students of Compulsory Secondary education, ranging in age from 12 to 16 years (M = 13.81, SD = 1.35). Cluster analysis identified four profiles of motivational goals: a group of students with a generalized high motivation profile, a group of students with generalized low motivation profile, a group of students with a predominance of learning goals and achievement goals, and a last group of students with a predominance of achievement goals and social reinforcement goals. Results reveal statistically significant differences among the profiles obtained regarding self-concept dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation and rupture of atomic-sized contacts is modelled by means of molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling microscope and mechanically controlled break junction experiments. These instruments routinely measure the conductance across the nano-sized electrodes as they are brought into contact and separated, permitting conductance traces to be recorded that are plots of conductance versus the distance between the electrodes. One interesting feature of the conductance traces is that for some metals and geometric configurations a jump in the value of the conductance is observed right before contact between the electrodes, a phenomenon known as jump-to-contact. This paper considers, from a computational point of view, the dynamics of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each other is performed in two crystallographic orientations of face-centred cubic gold, namely (001) and (111). Ultimately, the intention is to identify the structures at the atomic level at the moment of first contact between the surfaces, since the value of the conductance is related to the minimum cross-section in the contact region. Conductance values obtained in this way are determined using first principles electronic transport calculations, with atomic configurations taken from the molecular dynamics simulations serving as input structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyses the relationship between self-reported social anxiety and academic performance in a sample of 1,616 Spanish students (52.1% males) in compulsory secondary education, aged 12 to 16 years old. Social anxiety was assessed by the Social Phobia and Anxiety Inventory (SPAI) and academic performance was measured with school grades and failing grades. Results reveal that adolescents with social anxiety show a similar academic performance to adolescents without social anxiety. Although t tests found some significant differences in academic grades and number of failing grades, the effect size analysis showed that these differences had no empirical relevance. These findings are discussed considering the gender and grade levels and their theoretical and practical implication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Academic goals and academic self-attributions are relevant variables in school settings. The objective of this study is to identify whether there are combinations of multiple goals that lead to different motivational profiles and to determine whether there are significant differences between the groups obtained regarding causal attributions of success and failure (ability, effort, or external causes) in Mathematics and Language and Literature, and in overall academic performance. The Goal Achievement Tendencies Questionnaire (AGTQ) and the Sydney Attribution Scale (SAS) were administered to a sample of 2022 students of compulsory secondary education, ranging in age from 12 to 16 years (M = 13.81, SD = 1.35). Cluster analysis identified four motivational profiles: a group of students with a high generalized motivation profile, a group of students with low generalized motivation profile, a group of students with predominance of learning goals and achievement goals, and a final group of students with predominance of social reinforcement goals. Results revealed statistically significant differences between the profiles obtained in academic self-attributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of As(III) from aqueous solutions using naturally occurring and modified Algerian montmorillonites has been investigated as a function of contact time, pH, and temperature. Kinetic studies reveal that uptake of As(III) ions is rapid within the first 3 h, and it slows down thereafter. Equilibrium studies show that As(III) shows the highest affinity toward acidic montmorillonite even at very low concentration of arsenic. The kinetics of As(III) adsorption on all montmorillonites used is well described by a pseudo-second-order chemical reaction model, which indicates that the adsorption process of these species is likely to be chemisorption. Adsorption isotherms of As(III) fitted the Langmuir and Freundlich isotherm models well. The adsorption of As(III) is pH-dependent obtaining an optimal adsorption at pH 5. From the thermodynamic parameters, it is concluded that the process is exothermic, spontaneous, and favorable. The results suggest that M1, M2, and acidic-M2 could be used as low-cost and effective filtering materials for removal of arsenic from water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The template carbonization technique enables the production of porous carbons and carbon-based composites with precisely designed, controlled pore structures. The resulting templated carbons are therefore useful to investigate and understand the relation between carbon nanostructure and electrocapacitive properties. In this short review paper, we introduce our works on electrochemical capacitance using zeolite-templated carbons and carbon-coated anodic aluminum oxide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel polymer/TiC nanocomposites “PPA/TiC, poly(PA-co-ANI)/TiC and PANI/TiC” was successfully synthesized by chemical oxidation polymerization at room temperature using p-anisidine and/or aniline monomers and titanium carbide (TiC) in the presence of hydrochloric acid as a dopant with ammonium persulfate as oxidant. These nanocomposites obtained were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). XRD indicated the presence of interactions between polymers and TiC nanoparticle and the TGA revealed that the TiC nanoparticles improve the thermal stability of the polymers. The electrical conductivity of nanocomposites is in the range of 0.079–0.91 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerisation on TiC nanoparticles produces electroactive polymers. These nanocomposite microspheres can potentially used in commercial applications as fillers for antistatic and anticorrosion coatings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.