998 resultados para Scattering medium
Resumo:
The medium effect of in-medium nucleon-nucleon cross section sigma(med)(NN) (alpha(m)) on the isoscaling parameter a is investigated for two couples of central nuclear reactions Ca-40 + Ca-48 and Ca-60 + Ca-48; Sn-112 + Sn-112 and Sn-124 + Sn-124 at beam energy region from 40 to 60 MeV/nucleon with isospin dependent quantum molecular dynamics. It is found that there is the obvious medium effect of sigma(med)(NN) (alpha(m)) on the isoscaling parameters alpha. The mechanism for the medium effect of sigma(med)(NN) (alpha(m)) on a is investigated.
Resumo:
Influences of the isospin-dependent in-medium nucleon nucleon cross-section (sigma(iso)(NN) and momentum-dependent interaction (MDI) on the isoscaling parameter a are investigated for two central collisions Ca-40 +Ca-40 and Ca-60+ Ca-60. These collisions are with isospin dependent quantum molecular dynamics in the beam energy region from 40 to 60 MeV/nucleon. The isotope yield ratio R-21 (N, Z) for the above two central collisions depends exponentially on the neutron number N and proton number Z of isotopes, with an isoscaling. In particular, the isospin-dependent (sigma(iso)(NN) and MDI induce an obvious de crease of the isoscaling parameter a. The mechanism of the decreases of a by both sigma(iso)(NN) and MDI are studied respectively.
Resumo:
Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model and the scaling model according to nucleon effective mass, effects of elastic and inelastic NN scattering cross sections on pi(-)/pi(+) in the neutron-rich reaction of Ca-48 + Ca-48 at a beam energy of 400 MeV/nucleon are studied. It is found that cross-section effects of both NN elastic and inelastic scatterings affect Delta(1232), pi(-) and pi(+) production, as well as the value of pi(-)/pi(+).
Resumo:
We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.
Resumo:
Medium-spin states of Ge-70 have been studied via the Ni-60(C-12,2p gamma)Ge-70 reaction at 45 MeV. The ground-state band and the second 0(+) band have been extended to the 12(+) and 8(+) states, respectively. Two negative-parity bands, one of which has a coupled structure and the other has a decoupled structure, have been observed additionally. Although the latter decoupled structure was known up to the (21(-)) state from a previous experiment, the part of the level scheme up to the 15(-) state has been largely modified by the present experiment. Backbendings observed in the positive- and negative-parity yrast bands have been compared with those of the neighboring even Ge isotopes. The experimental level structure has been compared with the shell-model calculations in the model space (2p(3/2), 1f(5/2), 2(p1/2), 1g(9/2)) employing two kinds of effective interactions, one of which is an extended P + QQ interaction with monopole interactions and the other is developed from a renormalized G matrix. Microscopic structures of the observed bands have been discussed with the help of the shell-model calculations.
Resumo:
We estimate the two-photon exchange corrections to both proton and neutron electromagnetic physical observables in a relativistic light cone quark model At a fixed Q(2) the corrections are found to be small in magnitudes. but strongly dependent oil scattering angle Our results are comparable to those obtained from simple hadronic model in the medium momentum transfer region (C) 2009 Elsevier B V All rights reserved
Resumo:
Differential cross sections for the elastic scattering of halo nucleus He-6 on proton target were measured at 82.3 MeV/u. The experimental results are well reproduced by optical model calculations using global potential KD02 with a reduction of the depth of real volume part by a factor of 0.7. A systematic analysis shows that this behavior might be related to the weakly bound property of unstable nuclei.
Resumo:
The conformation of bovine serum albumin (BSA), as well as its interactions with negatively charged mica surfaces in saline solutions of different pH values, have been studied by small-angle neutron scattering (SANS) and chemical force microscopy (CFM), respectively. A new approach to extract the contribution of elementary interactions from the statistically averaged force-extension curves through self-consistent fitting was proposed and used to understand the effects of pH on the interactions and conformation of BSA in saline solutions. When pH increases, the SANS results reveal that the sizes of BSA molecules increase slightly, while the statistical analysis of the CFM results shows that the averaged pull-off force for the elongation monotonously decreases. The decrease of pull-off force with the increase of pH results from the decrease in the strength of hydrogen bonding and the number of interaction pairs, as well as the slight increase of the strength of van der Waals interaction. When pH approaches the isoelectric point (pI) of BSA, results from both SANS and CFM suggest a loss of long-range interactions in BSA molecules. Our results also suggest that the force-extension curve is mainly contributed by the van der Waals interaction. The combination of SANS and CFM provides new insight to understand the interactions and conformation of BSA molecules
Resumo:
The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.