908 resultados para Scanner Images
Resumo:
Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme.
Resumo:
L'objectiu d'aquesta tesi és l'estudi de les diferents tècniques per alinear vistes tridimensionals. Aquest estudi ens ha permès detectar els principals problemes de les tècniques existents, aprotant una solució novedosa i contribuint resolent algunes de les mancances detectades especialment en l'alineament de vistes a temps real. Per tal d'adquirir les esmentades vistes, s'ha dissenyat un sensor 3D manual que ens permet fer adquisicions tridimensionals amb total llibertat de moviments. Així mateix, s'han estudiat les tècniques de minimització global per tal de reduir els efectes de la propagació de l'error.
Resumo:
The paper reports an interactive tool for calibrating a camera, suitable for use in outdoor scenes. The motivation for the tool was the need to obtain an approximate calibration for images taken with no explicit calibration data. Such images are frequently presented to research laboratories, especially in surveillance applications, with a request to demonstrate algorithms. The method decomposes the calibration parameters into intuitively simple components, and relies on the operator interactively adjusting the parameter settings to achieve a visually acceptable agreement between a rectilinear calibration model and his own perception of the scene. Using the tool, we have been able to calibrate images of unknown scenes, taken with unknown cameras, in a matter of minutes. The standard of calibration has proved to be sufficient for model-based pose recovery and tracking of vehicles.
Resumo:
Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD fMRI images were acquired on a Siemens 3 T MRI scanner. Behavioural analyses indicated facilitation and interference effects and a noticeable effect of task difficulty. Some modular effects of modality were observed in the prefrontal cortex that survived exclusion of task difficulty related activations. No effect of task-relevant information was observed in the anterior cingulate. Future comparisons of the mediation of selective attention need to consider the effects of task context and task difficulty. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.
Resumo:
This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely, spread on smooth or fat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.