999 resultados para Sarcoplasmic proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bonds formed by the oxidation of cysteine residues in proteins are the major form of intra- and inter-molecular covalent linkages in the polypeptide chain. To better understand the conformational energetics of this linkage, we have used the MP2(full)/6-31G(d) method to generate a full potential energy surface (PES) for the torsion of the model compound diethyl disulfide (DEDS) around its three critical dihedral angles (χ2, χ3, χ2′). The use of ten degree increments for each of the parameters resulted in a continuous, fine-grained surface. This allowed us to accurately predict the relative stabilities of disulfide bonds in high resolution structures from the Protein Data Bank. The MP2(full) surface showed significant qualitative differences from the PES calculated using the Amber force field. In particular, a different ordering was seen for the relative energies of the local minima. Thus, Amber energies are not reliable for comparison of the relative stabilities of disulfide bonds. Surprisingly, the surface did not show a minimum associated with χ2 − 60°, χ390, χ2′ − 60°. This is due to steric interference between Hα atoms. Despite this, significant populations of disulfides were found to adopt this conformation. In most cases this conformation is associated with an unusual secondary structure motif, the cross-strand disulfide. The relative instability of cross-strand disulfides is of great interest, as they have the potential to act as functional switches in redox processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The folding of proteins is usually studied in dilute aqueous solutions of controlled pH, but it has recently been demonstrated that reversible unfolding can occur in other media. Particular stability is conferred on the protein (folded or unfolded) when the process occurs in ‘protic ionic liquids’ (pILs) of controlled proton activity. This activity (‘effective pH’) is determined by the acid and base components of the pIL and is characterized in the present study by the proton chemical shift of the N–H proton. Here we propose a ‘refoldability’ or ‘refolding index’ (RFI) metric for assessing the stability of folded biomolecules in different solvent media, and demarcate high RFI zones in hydrated pIL media using ribonuclease A and hen egg white lysozyme as examples. Then we show that, unexpectedly, the same high RFIs can be obtained in pIL media that are 90% inorganic in character (simple ammonium salts). This leads us to a conjecture related to the objections that have been raised to ‘primordial soup’ theories for biogenesis, objections that are based on the observation that all the bonds involved in biomacromolecule formation are hydrolyzed in ordinary aqueous solutions unless specifically protected. The ingredients for primitive ionic liquids (NH3, CO, HCN, CO2, and water) were abundant in the early earth atmosphere, and many experiments have shown how amino acids could form from them also. Cyclical concentration in evaporating inland seas could easily produce the type of ambient-temperature, non-hydrolyzing, media that we have demonstrated here may be hospitable to biomolecules, and that may be actually encouraging of biopolymer assembly. Thus a plausible variant of the conventional ‘primordial soup’ model of biogenesis is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A postembedding method has been developed for localizing water soluble allergens in rye-grass pollen. This uses dry fixation in glutaraldehyde vapour, followed by 2,2-dimethoxypropane, prior to a 100% ethanol series leading into embedment in LR Gold. This has allowed the attachment of specific monoclonal antibodies to the allergen, which are themselves probed with specific immunogold labels to the antibodies. Wall and cytoplasmic sites have been identified, representing an improvement of fixation and localization of allergens over previous studies employing polyclonal, broad spectrum antibodies.

Rye-grass allergens are labelled in mature pollen grains in the exine (tectum, nexine and central chamber), and in the electron opaque areas of the cytoplasm, especially mitochondria. The allergens are absent from the intine, polysaccharide (P) particles, amyloplasts, Golgi bodies and endoplasmic reticulum. IgE antibodies derived from humans allergic to rye-grass pollen, bind to similar sites in the cytoplasm but only to the outer surface of the pollen grain wall. This method now provides a valuable tool for further developmental studies on the pollen grains, in order to establish the site/s of synthesis of the allergens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most lethal form of malaria in humans and is responsible for over two million deaths per year. The development of a vaccine against this parasite is an urgent priority and potential protein targets include those on the surface of the asexual merozoite stage, the form that invades the host erythrocyte. The development of methods to transfect P. falciparum has enabled the construction of gain-of-function and loss-of-function mutants and provided new strategies to analyse the role of parasite proteins. In this review, we describe the use of this technology to examine the role of merozoite antigens in erythrocyte invasion and to address their potential as vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N-glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis. RIPs occur in fungi, bacteria and plants and are abundant in angiosperms, where they appear to have defensive role. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs are classified into two groups based on their difference in their primary structure. Type I RIPs consist of a single polypeptide chain of approximately 26–35 kDa that possess an RNA N-glycosidase activity. These proteins have attracted a great deal of attention because of their anti-viral, anti-tumor, and anti-microbial activities, which is useful in medical research and development. Here, we describe isolation of a novel protein from Momordica sp, a highclimbing vine from family Cucurbitaceae which is native to the tropical regions of Africa, Asia, Arabia and Caribbean. The purified protein has been verified by SDS-PAGE and mass spectrometry to contain only single chain Type-1 ribosome inactivating proteins (RIPs). With present experiments, we determined the presence of RIPs in edible plant materials, including some that are eaten raw by human beings. The novel protein is further characterized to validate its therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four CuI ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their CuI affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with CuI to yield distinct 1:2 chromatophoric complexes [CuIL2] 3- with formation constants β2 = 1017.2 and 1019.8 M-2, respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu+ concentrations from 10-12 to 10-19 M. Dtt binds CuI with KD∼10-15 M at pH 7, but it is air-sensitive, and its CuI affinity varies with pH. The CuI binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity CuI binding and the individual quantitative affinities (KD values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind CuI with sub-femtomolar affinities, consistent with tight control of labile Cu+ concentrations in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Living in groups is a widespread phenomenon in the animal kingdom. For free-spawning aquatic animals, such as the abalone (Haliotis), being in the close proximity to potential mating partners enhances reproductive success. In this study, we investigated whether chemical cues could be present in abalone mucus that enable species-specific aggregation. A comparative MS analysis of mucus obtained from trailing or fixed stationary Haliotis asinina, and from seawater surrounding aggregations, indicated that water-soluble biomolecules are present and that these can stimulate sensory activity in conspecifics. Purified extracts of trail mucus contain at least three small proteins [termed H. asinina mucus-associated proteins (Has-MAPs)-1–3], which readily diffuse into the surrounding seawater and evoke a robust cephalic tentacle response in conspecifics. Mature Has-MAP-1 is approximately 9.9 kDa in size, and has a glycine-rich N-terminal region. Has-MAP-2 is approximately 6.2 kDa in size, and has similarities to schistosomin, a protein that is known to play a role in mollusc reproduction. The mature Has-MAP-3 is approximately 12.5 kDa in size, and could only be identified within trail mucus of animals outside of the reproductive season. All three Has-MAP genes are expressed at high levels within secretory cells of the juvenile abalone posterior pedal gland, consistent with a role in scent marking. We infer from these results that abalone mucus-associated proteins are candidate chemical cues that could provide informational cues to conspecifics living in close proximity and, given their apparent stability and hydrophilicity, animals further afield.