937 resultados para Salovaara, Hannu


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laskuluiskakohteita on Pohjois-Karjalassa yhteensä jopa yli 100 kpl. Niiden kunto ja käyttökelpoisuus on kuitenkin vaihteleva eikä esimerkiksi matkailun markkinoinnissa ole mahdollisuutta mainostaa kohteita, joiden käyttökelpoisuudesta ei ole varmaa tietoa. Tämä raportti perustuu vuosina 2012-2014 paikan päällä tehtyihin inventointeihin. Lähes sata kohdetta mitattiin, kuvattiin ja arvioitiin jatkotoimenpiteitä varten. Aineistojen perusteella valittiin noin 35 parasta, eri puolille maakuntaa tasaisesti sijoittuvaa kohdetta, joita suositellaan kehitettäväksi edelleen lähitulevaisuudessa. Kohteet on valittu suurten vesistöjen varsilta, koska siellä myös käyttäjäkunta on suurin. Ehdotettujen kohteiden jatkokehittäminen edellyttää eri tahojen laajaa yhteistyötä suunnittelussa, rahoituksessa ja toimeenpanossa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kerros-kerrokselta eli layer-by-layer eli LbL –kalvoja voidaan valmistaa kastamis-, sumutus-, pyöritys- tai pyöritys-sumutusmenetelmillä. Kalvon muodostumisen ensimmäinen vaihe on nopea, se kestää muutaman sekunnin. Toisessa vaiheessa tapahtuu diffundoitumista ja se kestää useita minuutteja. Rakentumista voidaan tarkkailla lukuisilla visuaaliseen tai uv-valoon tai muuhun säteilyyn perustuvilla menetelmillä. Kalvojen pintarakennetta ja karheutta sekä eri suolojen vaikutusta voidaan selvittää atomivoimamikroskopia- ja ellipsometrisillä kuvilla. Luminesenssi on säteilyn itsestään tapahtuvaa emissiota. Fluoresenssi ja fosforesenssi ovat luminesenssin erikoistapauksia. Fotonin absorption jälkeen molekyyli voi palata perustilalle fluoresenssin tai fosforesenssin avulla, mutta molekyyli voi myöskin kokea sisäisen varauksensiirron tai konformaation vaihdoksen. Luminesenssi-ilmiötä voidaan käyttää tunnistamaan yhdiste tai määrittämään sen pitoisuus. Voidaan rakentaa sensoreita, joissa yhdisteen toinen osa on osana sensoria. Yhdisteen toisen osan, analyytin, liittyessä siihen tapahtuu värimuutos. Sensori koostuu optisesta päästä, vaihtelevan pituisesta johdosta ja aistimisyksiköstä. Kokonaislaitteisto koostuu valon lähteestä, valokuidusta ja optisesta voimamittarista. Analyytin indusoimaa aggregaatiota ja sitä seuraavaa optista vastetta voidaan käyttää herkkänä muuntomekanismina analyytin havaitsemiseen. On kehitetty lukuisille analyyteille herkkiä spesifisiä polymeerejä, joita voidaan käyttää eri ionien havaitsemiseen. Myös bioaistiminen on mahdollista, esimerkiksi kolibakteeri voidaan havaita. Kvanttipisteet ovat pieniä puolijohtavan materiaalin hiukkasia. Niillä on ainutlaatuisia optisia, sähköisiä ja kemiallisia ominaisuuksia. On kehitetty erityisiä lastulaboratorioita. Niillä on mahdollisuus toteuttaa erilaisia funktioita, kuten näytteen valmistus, pitoisuuden säätö ja detektio yksittäisen miniaturisoidun alustan päällä. Luminesenssissa valon emissio vahvistuu, ja monissa tapauksissa tapahtuu ns. Stokesin siirtymä. Stokesin siirtymässä valon emissiomaksimin aallonpituus siirtyy infrapuna-alueen suuntaan. Emission vahvistumisen kemiallisina aiheuttajina ovat kromoforit eli värin kantajat. Valon määrää ja aallonpituutta voidaan käyttää tunnistamaan analyytti tai analyytin määrä. Luminesenssin lisäksi voidaan käyttää taittoindeksiin perustuvia optisia aistimismenetelmiä.