992 resultados para Salinity--Barkely Sound (BC)--Observations
Resumo:
Codends of four different mesh size" were compared during exploratory bottom trawling on Lake Victoria. Small mesh sizes (19 and 38 mm) generally caught greater quantities of fish than large mesh sizes (64 and 76 mm) with haplochromis species responsible for the difference. The differences in catch rates were most pronounced where dense concentration of small haplochromis were found. This was generally in shallow water since the average size of haplochromis tends to increase with depth. Catch rates for species other than haplochromis were fairly similar for the codends tested, although there were indications of lower catches in small mesh coderlds fished through dense haplochromis concentrations. For haplochromis fished with 64 and 38 mm eodends, the estimated 50% retention lengths were 13.6 and 8.0 cm, respectively. The predicted value for the 19 mm codend was 4.5 cm.
Resumo:
Nothobranchius guntheri is found in seasonal pools and streams in the coastal region of Tanzania. A population recurring annually in a pond near Kilosa has been studied. Growth in length was rapid and maximum mean lengths were attained within 11-12 and 7-8 weeks of hatching by males and females respectively. Males grew larger and exhibited wider variation in length than females. N. guentheri shows clear sexual dichromatism. No significant inequality in the sex ratio was found. Females with ripe eggs were found 7-8 weeks after hatching. Spawning continued throughout adult life and fecundity increased markedly with increasing length. In laboratory aquaria, aggressiveness between adult males was noted and females were actively driven on to the substratum preparatory to spawning. The diet of the fish pond consisted chiefly of aquatic and terrestrial insects, of which midge larvae and pupae were the most common. N. guentheri is exploited by man in the aquarist trade and for the biological control of mosquitoes. An extended redescription of the species is appended which includes N. melanospilus (Pfeffer) as a synonym.
Resumo:
Tilapia nilotica is commercially very important throughout the Ethiopian region including the major rivers in West Africa, the Chad basin, the Nile and its associated lakes. The Tilapia fishery of Lake Rudolf is at present small, but potentially important, particularly on the eastern shores of the lake where fishing intensity is low. Preliminary results from observations on the feeding of Tilapia nilotica in Lake Rudolf are presented. The fish exhibit a regular diurnal feeding rhythm, commencing between 05.00 hours and 08.00 hours and ceasing between 14.00 hours and 18.00 hours. The largest fish appear to feed longer. Quantitative estimates of the daily food intake indicate less material to be ingested than by populations in other lakes. The lysis of algae, intestinal pH and food material are also investigated.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).
Resumo:
The present study was under taken to provide further and more detailed information on the apparent seasonal and relative abundance of the species, food and feeding habits. Spawning season and size composition. The incidence of parasites, in relation to the month of the year and the fish length, was also examined.
Resumo:
Cage culture of Tilapia is not suggested as a substitute for any known techniques in fish culture, but as one of the various techniques of obtaining more fish under controlled conditions. This fact has been very well accepted in various countries. Whererever facilities exist, this line of fish culture should be vigorously explored as a possible avenue in increasing fish production. High density stocking, management under controlled conditions, easy technique of fabricating the cage at relatively low cost, having no demand on land area, absence of prolific and effective breeding and easy availability of fish when a person needs it are a few of the attractions of the technique. The studies indicate that it is desirable to have different meshes for the cages, such as, small meshed cages for rearing fry to fingerlings stages, and larger meshed cages for rearing fingerlings to table sized fishes. II' the meshes are small, the resistance will be more and less water wilt pass through. While feeding with powdered food material, because of brisk activity of feeding fish, a part of the feed appeared wasted. This can be easily overcome if we would resort to feeding fish with cheap pelleted feeds which will no doubt reduce wastage. Precaution has to be taken against damage of the net and thereby loss of fish and against poaching by unauthorised persons. In the present attempt has been demonstrated the possibility of utilizing locally available species of Tilapia for cage culture and obtaining moderately satisfactory growth rates.